
Analgesia Database:
Perl Program

Version 0.90

J.M. van Schalkwyk

August 3, 2005

Contents

1 Introduction 8
1.1 Database used. 8

2 Initialisation 9
2.1 Packages . 9
2.2 Housework . 10

2.2.1 The log file . 10
2.2.2 Constants. 10
2.2.3 A few noteworthy variables. 11
2.2.4 Endian state. 11

2.3 ODBC connection. 12
2.4 A few frills . 12

3 Main Window 14
3.1 geometry of main window. 14
3.2 variables. 14
3.3 Control buttons. 15

4 Utilities 17
4.1 Constants. 17
4.2 General purpose interaction. 17

4.2.1 Alert . 18
4.2.2 Print to file or console. 18

1

CONTENTS 2

4.2.3 Warn . 18
4.2.4 Confirm. 19
4.2.5 Ask . 19
4.2.6 Choose. 20

4.3 Date handling routines. 21
4.3.1 Convert date to seconds. 21
4.3.2 Local time . 21

5 SQL/database section 22
5.1 Perform SQL commands. 22

5.1.1 SQL execution. 22
5.1.2 Retrieving multiple values using SQL. 23
5.1.3 Fetch a script line. 24
5.1.4 SQL batching. 25
5.1.5 SQL commit and rollback. 26
5.1.6 Key generation. 26

5.2 Database creation or deletion. 27
5.2.1 Creating the database. 27
5.2.2 Kill the database. 28

5.3 Menu population . 29
5.3.1 MakeMenus. 29
5.3.2 ClearMenus. 29
5.3.3 MakePeople. 30
5.3.4 KillPeople . 30

5.4 Submit SQL script queries. 30
5.4.1 QUERY. 30
5.4.2 SQLMANY. 31
5.4.3 DOSQL. 32

5.5 Storage of table metadata. 32

6 Menu creation 37
6.1 GoMenu. 37

6.1.1 Entering GoMenu. 37
6.1.2 Should we pop?. 37
6.1.3 Clear local variables?!. 38
6.1.4 Run associated script. 38
6.1.5 Prepare to create. 39
6.1.6 Destroy old widgets . 40
6.1.7 Do it! . 40
6.1.8 Close prior window. 41

CONTENTS 3

6.2 Subsidiary functions . 41
6.2.1 SubMenu. 41
6.2.2 Find all items. 42
6.2.3 Create items one by one. 42
6.2.4 Identify a monomorphic table. 43
6.2.5 Sub-menu. 44
6.2.6 Identify a polymorphic table. 44
6.2.7 Just make an item!. 45
6.2.8 ExitWindow . 46

6.3 Grouping . 46
6.3.1 ClearGroups. 46
6.3.2 FixGroups . 46

7 Tables 48
7.1 Polymorphic tables. 48

7.1.1 MakeTable . 48
7.1.2 Identify columns. 48
7.1.3 Get row V values. 49
7.1.4 . 49
7.1.5 Get column details. 50
7.1.6 Make column header. 51
7.1.7 . 51

7.2 Monomorphic tables. 52
7.2.1 Make1Table. 52
7.2.2 [to fix] . 53
7.2.3 [to fix] . 53
7.2.4 [to fix] . 54
7.2.5 [to fix] . 55

8 Items 56
8.1 CreateOneItem. 56

8.1.1 Startup . 56
8.1.2 Minor initialisation. 56
8.1.3 Create a label. 57
8.1.4 Create a button. 58
8.1.5 Create a checkbox. 58
8.1.6 Create a pushbutton. 59
8.1.7 Create a text field. 60
8.1.8 Create a poptrigger. 61
8.1.9 Create a scrollbar. 62

CONTENTS 4

8.1.10 Exit . 62
8.2 Subsidiary ‘Item’ routines . 63

8.2.1 RunClearScript. 63
8.2.2 FlipButton . 63
8.2.3 ClearButton. 64
8.2.4 Mutex2 . 65
8.2.5 GreyGet. 65
8.2.6 DoButton2 . 66
8.2.7 Dopoptrigger6 . 66
8.2.8 DoCheckbox3 . 66
8.2.9 CheckEntry5. 67

9 Scripting 68
9.1 Complete script execution. 68

9.1.1 RunWholeScript. 68
9.1.2 Pull out commands. 69
9.1.3 Other skip values: MARK. 69
9.1.4 skip -3: LIST . 70
9.1.5 skip -4: URZN . 70
9.1.6 Other negative skip values. 71
9.1.7 Returning. 71
9.1.8 InterList. 72

9.2 Command execution. 72
9.2.1 DoCommand. 72
9.2.2 Insert stack pops. 73
9.2.3 Parenthetic argument. 73
9.2.4 Invoke a routine. 74
9.2.5 Implement REPEAT. 74
9.2.6 A quoted item. 74

9.3 SQL commands. 75
9.3.1 QUERY. 75
9.3.2 DOSQL. 75
9.3.3 SQLMANY. 75
9.3.4 KEY . 76
9.3.5 OKSQL. 76
9.3.6 COMMIT . 76
9.3.7 ROLLBACK . 76
9.3.8 ME . 76

9.4 Arithmetic and Logical commands. 77
9.4.1 ISNULL . 77

CONTENTS 5

9.4.2 NEG . 77
9.4.3 NOT . 77
9.4.4 ADD . 78
9.4.5 SUB. 78
9.4.6 DIV . 78
9.4.7 MOD . 78
9.4.8 MUL . 79
9.4.9 SAME . 79
9.4.10 GREATER . 79
9.4.11 LESS . 80
9.4.12 AND . 80
9.4.13 OR . 80
9.4.14 ISNUMBER . 81
9.4.15 INTEGER . 81
9.4.16 BOOLEAN. 81
9.4.17 NULL . 82

9.5 Flow of control and stack commands. 82
9.5.1 RETURN. 82
9.5.2 STOP. 82
9.5.3 FAIL . 82
9.5.4 SKIP . 82
9.5.5 COPY. 83
9.5.6 DISCARD . 83
9.5.7 LIST . 83
9.5.8 SWOP . 84
9.5.9 BURY. 84
9.5.10 DIGUP . 84
9.5.11 MARK . 84
9.5.12 UNMARK . 85
9.5.13 URZN. 85
9.5.14 RUN . 86

9.6 Single letter commands and their friends. 86
9.6.1 X . 86
9.6.2 V . 86
9.6.3 SETX . 87

9.7 General purpose/text commands. 87
9.7.1 IN . 87
9.7.2 SPLIT. 87
9.7.3 LENGTH . 88
9.7.4 UPPERCASE. 88

CONTENTS 6

9.7.5 LOWERCASE . 88
9.8 Date and time. 88

9.8.1 NOW . 88
9.9 Menu-related commands. 89

9.9.1 ALERT . 89
9.9.2 ASK . 89
9.9.3 CONFIRM . 89
9.9.4 QUIT . 89
9.9.5 MENU . 90
9.9.6 ENABLED . 90
9.9.7 POPMENU. 90
9.9.8 PUSHMENU. 91

9.10 Local variables . 91
9.10.1 NAME . 91
9.10.2 ISNAME . 91
9.10.3 $[name]. 92
9.10.4 SET. 92

9.11 Graphical . 92
9.11.1 PAPER . 92
9.11.2 INK . 93
9.11.3 LABEL . 93

9.12 Communication (experimental). 94
9.12.1 IAM . 95
9.12.2 SEND. 95

9.13 Experimental, obsolete and debugging routines. 96
9.13.1 PRINT . 96
9.13.2 DEBUG. 96
9.13.3 REDRAW. 96
9.13.4 REGEX. 97
9.13.5 CHOOSE. 97
9.13.6 MAP . 97
9.13.7 RECIPROCAL. 98
9.13.8 FORCEX. 98
9.13.9 SETZ . 98
9.13.10 TEXTBEFORE. 99
9.13.11 PAD. 99
9.13.12 JOIN . 99
9.13.13 SECONDS. .100

9.14 End of a long run. .100
9.15 Subsidiary routines. .100

CONTENTS 7

9.15.1 XPrint. .100
9.15.2 Invoke. .101

9.16 Local variables .101
9.16.1 ClearLocalNames. .101
9.16.2 KeepLocalNames. .102
9.16.3 RestoreLocalNames.102
9.16.4 CreateLocalName. .102
9.16.5 SetLocal .103
9.16.6 IsLocal .103
9.16.7 FetchLocal. .104

10 PDB Creation 105
10.1 PDB file format. .105
10.2 Our own header. .106

10.2.1 Column data types. .107
10.3 Data row format. .108
10.4 PDB creation routines. .109

10.4.1 MakeAllPDBs .109
10.4.2 MakeOnePDB. .110
10.4.3 MakeOurHeader. .111
10.4.4 FetchAllColumns. .113
10.4.5 MakeColDescriptor. .114
10.4.6 FetchAllRecs. .117
10.4.7 FormatDatum. .120
10.4.8 SqueezeDate. .122
10.4.9 SqueezeTime. .122
10.4.10 MakePalmDBHeader.123
10.4.11 Print0. .125
10.4.12 Print4. .126
10.4.13 Print2. .126

1 INTRODUCTION 8

1 Introduction

In previous documents (PDA Implementation Details,Part I andPart II) we de-
scribed SQL code underlying our database, as well as how we dynamically create
user menus from data stored as SQL.

This documente shows how we flesh that code out into a Perl program. Us-
ing ActivePerl for MS Windows1 we establish an ODBC connection, create and
populate our database using SQL scripts, and then create a user interface with the
help of menu data stored in the database.

Readers of this document are assumed to have a fair working knowledge
of SQL, as well as being fairly fluent in Perl. Minor familiarity with ODBC
(SQL/CLI) will be an asset. Although we use Perl/tk to create a graphical user
interface we don’t assume familiarity with Perl/tk or Tcl/TK.2

This documentation and all associated code is released under the GNU Public
Licence (GPL). Please note the conditions of this licence, a copy of which can be
obtained at:http://www.gnu.org/copyleft/gpl.html. This document is Copyright
c©J van Schalkwyk, 2005, as is the associated perl program (pain.pl) released
together with this document.

1.1 Database used

For initial implementation, we decided to use the little-known Ocelot SQL. Rea-
sons for this choice include:

• Availability of the Ocelot database under the GPL;

• Close conformance to reasonable SQL standards;

• The small size and fast speed of the database;

• Ready ODBC connectivity.3

Because we have eschewed vendor-specific SQL constructs to the best of our
ability, we hope this will facilitate use of our SQL on other platforms. Programs
such as Access4 will need an extra layer between our code and the ODBC.5

1Versions 5.6 or 5.8. Heck, if you can get it to work under Windows, it’ll work anywhere :-)
2not that such familiarity would be without benefit!
3There’s also the fact that on the couple of occasions where we’ve contacted the Ocelot chaps,

they have been incredibly helpful and friendly, despite the fact that no money changed hands!
4where the developers would appear to have gone to great lengths to make a non-standard

product
5Our use of pipes as delimiters will also need to be translated to a more Visual-BASIC friendly

character, or sequence of characters in this context!

http://www.anaesthetist.com/analgesia/pdf/AnalgesiaDBpart1.pdf
http://www.anaesthetist.com/analgesia/pdf/AnalgesiaDB2.pdf
http://www.gnu.org/copyleft/gpl.html

2 INITIALISATION 9

2 Initialisation

We start off with standard Perl initialisation, and then establish an ODBC connec-
tion. For the Perl program to function in Windows, you will need to have Active
Perl, and must install Ocelot SQL.6 Make sure that you enable ODBC connectivity
when you install Ocelot!

You will then need to go to the Windows control panel and click on the ‘Data
Sources (ODBC)’ item, which in Windows 2000 is hidden under ‘Administrative
Tools’. There, in the User DSN tab, click on ‘Add’, select OCELOT7, and after
selecting ‘Finish’, type PAIN04 into the Data Source Name field, and click on
OK.

In addition you will need to create a directory to contain thepain.pl file.
Within that directory, create a subdirectory calleddata . Download the following
files from ourwebsite,8 and move them to thedata subdirectory — now you’re
away!

• clearmenus.sql

• CLEARPATIENTS.sql

• constants.const

• KILL.sql

• MENUS.sql

• META.sql

• PEOPLE.sql

• SETUP.sql

2.1 Packages

Pretty trivial stuff:

#!/usr/local/bin/perl -w
use strict;
use Tk;
require Tk::Dialog;

6Or you might wish to modify things youself to run under e.g. Linux/PostgreSQL, if you’re a
whiz kid!

7If it’s not there then you forgot to install it as an ODBC driver!
8You can obtained them zipped at http://www.anaesthetist.com/analgesia/data/data.zip

http://www.anaesthetist.com/analgesia/data

2 INITIALISATION 10

require Tk::Toplevel;
require Tk::Font;
use Date::Calc qw(:all);

We use the Tk package (and specific components) extensively. We also use
the Date::Calc package within a few minor routines.

2.2 Housework

The following cumbersome but necessary code is used to:

1. Open up a log file, used to log errors, and so forth;

2. Load a few ’constant’ values from a separate file;

3. Establish a few important variables

4. Check the endian state of this machine

Let’s look at each of these in turn:

2.2.1 The log file

my $logfile;
$logfile="EDLOG.LOG";
open LOGFILE, ">$logfile" or die

"*CRASH* Could not open LOG $logfile :$!\n";

Trivial. Open up a file to write errors and stuff to. Call itEDLOG.LOG.

2.2.2 Constants

my %CONST;
&LoadConstants();
my $WARNINGTHRESHOLD = $CONST{’WARNABOVE’};
my $WARNCOUNT=0;

An associative array of constants, almost the best I can do with Perl (About
the only area where C is conspicuously better than Perl is with constants). I used
to place emphasis on the WARNing variables in the above, but these should be
de-emphasised. The actual LoadConstants routine is discussed below (Section
4.1).

The file isconstants.const within the data subdirectory. We open it,
and parse each line until we encounter a line with a star as the first character.9

9Not a good idea to leave out this line.

2 INITIALISATION 11

In my usual fashion, I balance parentheses vertically, and use oddwhile con-
structs in preference to other loops. We associate constant names with values
using the CONST associative array. The alert function simply provides an alert
on the screen, with an OK button. It’s discussed below in section4.2.1

2.2.3 A few noteworthy variables

my %LOCALNAMES;
my %KEPTLOCALNAMES; # temp copy of %LOCALNAMES
my @LOCALARRAY;
my $LOCAL;
my $KEPTLOCAL; # and store of index

my %IAM;
my %KEPTIAMS;
my @INSCRIPT;
my $FRED;
my $SQLOK;
my $ROOTFONT;
my $METASTORE = 0;

$FRED = ’1’;
$SQLOK = 0; # clumsy global hack

Each menu in our program has associated local variables, stored in LOCALAR-
RAY which we create here. LOCAL is an index into this array; LOCALNAMES
an associative array of names. We can keep temporary copies (ugh) of both in
KEPTLOCALNAMES and KEPTLOCAL.

IAM, KEPTIAMS and INSCRIPT are very experimental, used for commu-
nication between items in a menu. Can largely be ignored. The remaining ugly
variables are simply convenience variables, with thereally importantone being
SQLOK, used to determine whether a recent SQL statement succeeded or failed!
METASTORE determines whether, as we create tables, so we record information
about them in ‘meta tables’!10

2.2.4 Endian state

It’s nice to know whether we’re on a big or little endian machine. Here’s a test
(although we don’t use it much)! We even print the result to the console.

my $BIGENDIAN;
if (unpack ("h*", pack("s2", 1, 2)) == 10002000)

10By the way, attempts at such storage would be singularly silly while we were creating the
meta-tables themselves.

2 INITIALISATION 12

{ $BIGENDIAN = 0; # on WIN-DOwS system, should be zero.
print "\n Little-endian";

} else
{ $BIGENDIAN = 1;

print "\n Big-endian";
};

2.3 ODBC connection

Here’s another Perl package we use — Philip Roth’s ODBC. See how we use
our first constant — the database name is specified as e.g. PAIN04 in the file
constants.const referred to above.

my $myODBC;
use Win32::ODBC;
$myODBC = new Win32::ODBC($CONST{’DATABASE’});
unless ($myODBC->Connection)

{ die "*CRASH* Failed to connect. Dearie me!\n";
};

print "\n ODBC: connection worked\n";

2.4 A few frills

Before we move on to creating the main window onscreen, we set up debugging,
and a few important variables.

my $DEBUG; # for ODBC debugging
$DEBUG = 0;

my $BUG;
$BUG = 16;
$myODBC->Debug($DEBUG);

my $TODAY = &GetLocalTime();
print ("\n TODAY: $TODAY\n");

my $CURRENTUSER;
$CURRENTUSER = 1;

The useful BUG variable contains bit flags, each of which triggers a different
debugging behaviour. Table1 contains the flags (and their masks).

2 INITIALISATION 13

Bit Mask Meaning
0 1 general
1 2 Item creation
2 4 SQL
3 8 Tk item debug!
4 16 Scripting
5 32 groups
6 64 -
7 128 -

Table 1:Bit flags for BUG variable

Ultimately we will identify the current user by their unique code; for now, we
just use a default value of 1. Section4.3.2discusses GetLocalTime.

3 MAIN WINDOW 14

3 Main Window

The main window is at present a rather clumsy, large menu constructed using Tk.
We will rather arbitrarily divide the (continuous) code into three sections:

3.1 geometry of main window

This section is tiny — we just set up the window MAINW. We use the rather cute
Perl/tk feature that as we move the mouse around, so the widget focus follows it
without any clicking!

my $MAINW = new MainWindow;
$MAINW->geometry(’760x500’); # dimensions
$MAINW->geometry(’+10+30’); # screen offset!
$MAINW->title(’Pain Database 2005’);
$MAINW->focusFollowsMouse;

3.2 variables

A whole host of variables, arrays and so forth follows:

my $BASEX = $CONST{’BASEX’};
my $BASEY = $CONST{’BASEY’};
my $BASEW = $CONST{’BASEW’};
my $BASEH = $CONST{’BASEH’};
my @TKITEMS; # all active widgets (global)
my @TKVALUES; # and their values
my @VVALS; # specific to V
my @POPVALUE; # for poptriggers

TKITEMS is a record of all widgets created within Tk. We also retain asso-
ciated values in TKVALUES We later on introduced a specific table (VVALUES)
to allow the V command access to row values from within scripts. This coding
is ugly and inefficient, and should be fixed! BASEX and so on are ‘baseline’
dimensions which allow us to adjust the size and position of our PDA-like menus.

We also need a separate array for poptriggers (POPVALUE). Next, let’s look
at several other important globals (eugh).

my $XPARAM;
my $NEWXPARAM; # ’intended XPARAM’
my @X; # X-values for menus
my @MENUS;
my @CMDSTACK;
my $ICOUNT;

3 MAIN WINDOW 15

my @GROUPS;
my $TOPGROUP; # top group number

$XPARAM = ’’;
$NEWXPARAM = ’’;
$ICOUNT = 0;

We turn toX, thesubjectof each menu. This value, passed between menus, is
stored in XPARAM, and when pushed as we move from menu to menu (and back),
is stored in the array simply called X. We also need an array for menu names
(MENUS), a rather hideous stack on which to put commands, a menu item count
(ICOUNT), and some way of grouping items, which points to items in TKITEMS.
We intialise these as appropriate.

3.3 Control buttons

We distribute a number of badly-placed buttons around the main menu. The most
important of these by far is the last — the MENU button which opens up our ‘PDA
simulation’. We also toss in a new font (ROOTFONT). This is all rather clumsily
done, and needs attention.

my $bottomFrame = $MAINW->Frame();
my $newBut = $bottomFrame-> Button(

-text => ’Create Database’,
-command => [\&MakeDB]);

$ROOTFONT = $newBut->fontCreate(’fred’,
-family => ’Helvetica’,
-size =>9);

$newBut->configure(-font => $ROOTFONT);
$newBut->configure(-background => ’green’);

my $killBut = $bottomFrame->Button(
-text => ’Kill Database’,
-command => [\&KillDB]);

$killBut->configure(-background => ’red’);
my $quitBut = $MAINW->Button(

-text => ’Quit’,
-command => sub{exit});

my $menuBut = $bottomFrame-> Button(
-text => ’Make menus’,
-command => [\&MakeMenus]);

my $menuClearB = $bottomFrame-> Button(
-text => ’Clear menus’,
-command => [\&ClearMenus]);

my $ptBut = $bottomFrame-> Button(
-text => ’Make people’,
-command => [\&MakePeople]);

3 MAIN WINDOW 16

my $ptClearB = $bottomFrame-> Button(
-text => ’Clear people’,
-command => [\&KillPeople]);

my $MakePDB = $bottomFrame-> Button(
-text => ’Make PDBs’,
-command => [\&MakeAllPDBs, $myODBC]);

my $menuB = $bottomFrame->Button(
-text => ’MENU’,
-command => [\&GoMenu, $myODBC, ’MAIN’, $MAINW]);

$newBut->configure(-width => 20);
$killBut->configure(-width => 20);
$menuB->configure(-width => 20);
$menuB->pack(-side => ’left’,

-expand => 1,
-ipady => 10,
-pady => 3);

$killBut->pack(-side => ’left’,
-expand => 1);

$newBut->pack(-side => ’left’,
-expand => 1);

$menuBut->pack();
$menuClearB->pack();
$ptBut->pack();
$ptClearB->pack();
$MakePDB->pack();
$quitBut->pack();
$bottomFrame->pack(-side => ’top’,

-fill => ’both’);
MainLoop;

The -text values in the above give an indication of their function, which is
implemented by linking the buttons to the relevant commands thus:
-command => [\&MakeMenus]

As we’ve already said, the most important of all is:
[\&GoMenu, $myODBC, ’MAIN’, $MAINW]

See how we submit a handle to the database myODBC,11 as well as the name
of the first menu (’MAIN’), and of course, our current window which will be the
parent of subsequent windows.

11Despite myODBC being global, we retain some dignity and pass it from menu to menu.

4 UTILITIES 17

4 Utilities

These are largely trivial subroutines. Several of them use Tk to interact with the
user, providing confirmation and so forth. First let’s look at such subroutines, then
we’ll examine date-handling routines.

4.1 Constants

Perl is mildly retarded when it comes to constants, so we create our own associa-
tive array to allow us to use these little creatures. Here’s the routine LoadCon-
stants, already referred to in Section2.2.2above.

sub LoadConstants
{ my ($CONSTFILE, $ok, $key, $value);

$ok = 1;
$CONSTFILE = "data/constants.const";
open CONSTFILE, $CONSTFILE

or die "*CRASH* Can’t open $CONSTFILE :$!\n";
<CONSTFILE>; #discard first line
while($ok)

{ $_ = <CONSTFILE>;
if (/ˆ*/) #if last line

{ $ok = 0;
} else
{ chomp $_;

if (/<(.+)>=\’(.+?)\’/) #pull out key and value
{ $key = $1;

$value = $2;
$CONST{$key} = $value; # key MUST be unique

} else
{ print LOGFILE "Bad CONSTANT line: <$_>\n";

&Alert($MAINW, "Bad constant <$_>. See EDLOG");
}; }; };

close CONSTFILE;
}

We can now say$CONST{’FRED’} to refer to a constant called FRED. The
value of FRED can be defined in the fileconstants.const within the data
subdirectory of the current directory.

4.2 General purpose interaction

There are several subroutines in this group. The Alert subroutine has already been
mentionedabove. Here it is:

4 UTILITIES 18

4.2.1 Alert

sub Alert
{ my ($thisW, $msg);

($thisW, $msg) = @_;
my $D = $thisW->Dialog(

-title => $msg,
-text => "$msg",
-default_button => ’OK’,
-buttons => [’OK’],

);
$D->title(’Note..’);
$D->Show;

}

This function makes use of Tk. We read the input parameters, and create a Di-
alog in the usual Tk manner, with-name => value pairs, separated by com-
mas. I’m sure you’ll agree that after a few glances, Tk is pretty self-explanatory.

4.2.2 Print to file or console

sub Print
{ my ($fred);

($fred) = @_;
print LOGFILE $fred; # redirect

}

We use this rather than the standard Perlprint , as it permits us to flexibly
redirect printing.12 Here we redirect all Printing to the LOG file.

4.2.3 Warn

The following is a trivial and simple way of detecting aberrations and logging
them. We don’t use it much any more.

sub Warn
{ my ($myODBC, $level, $msg);

($myODBC, $level, $msg) = @_;
if ($level > $WARNINGTHRESHOLD)

{ print LOGFILE "\nWARNING ($WARNCOUNT): $msg\n";
$WARNCOUNT ++;

};
}

12There are probably better ways . . . sigh, there always are.

4 UTILITIES 19

4.2.4 Confirm

We display a message in the given window, and return 1 or 0, for confirmation or
not.

sub Confirm
{ my ($thisW, $msg);

($thisW, $msg) = @_;
my $D = $thisW->Dialog(

-title => "Confirm your choice",
-text => "$msg",
-default_button => ’No’,
-buttons => [’No’,’Yes’]);

$_ = $D->Show();
if ($_ eq ’Yes’)

{ return 1;
};

return (0);
}

We display a message in the given window, and return 1 or 0, for confirmation
or not.

4.2.5 Ask

sub Ask
{ my ($win, $title, $default);

($win, $title, $default) = @_;
my ($db, $fred);
my ($e);
$fred = $default;
$db = $win->DialogBox(

-title => $title,
-buttons => ["OK", "Cancel"]);

$e = $db->add(’Entry’,
-textvariable => \$fred)->pack(-padx => 50,

-pady => 15,
-ipadx => 5);

my $choice = $db->Show;
if ($choice eq "Cancel")

{ return ("");
};

return ($fred);
}

Given a window, a title and a default value, obtain a text string from the user
and return this, unless the user hits the ‘Cancel’ button, whereupon we return a

4 UTILITIES 20

zero length (null) string. The ‘Entry’ we add in the above is the text field, bound
to the variable fred using -textvariable. This binding allows us access to the value.

4.2.6 Choose

The following is a little more ambitious, as we create a dialogue box containing
a pop-list (Optionmenu). We don’t yet use this routine in our coding, but it has
potential.

sub Choose
{ my ($newW, $title, $lst, $myODBC, $idx);

($newW, $title, $lst, $myODBC, $idx) = @_;
my ($db, $txtvar);
my ($e);
$txtvar = "";

$db = $newW->DialogBox(
-title => $title,
-buttons => ["OK", "Cancel"]);

$e = $db->add(’Optionmenu’,
-textvariable => \$txtvar)->pack(-padx => 50,

-pady => 15,
-ipadx => 5);

my (@optns);
$_ = $lst;
if (/ˆ\&(.+)/) # if begins with &, run fx!!

{ my($kept);
$kept = $#CMDSTACK; # preserve cmd stack
&Invoke($myODBC, $newW, $1, $idx, ’’, -1);
@optns = @CMDSTACK[$kept..$#CMDSTACK]; #get list
$#CMDSTACK = $kept; #restore cmd stack

} else
{ s/\|$//; # rid of terminal pipe

@optns = split /\|/;
};

$e->addOptions(@optns);

my $choice = $db->Show;
if ($choice eq "Cancel")

{ return ("");
};

return ($txtvar);
}

The if..then..else decides whether we are to run a script to obtain the list, or
simply take the submitted values and split it as indicated by the pipes. We still

4 UTILITIES 21

need to standardise the script invocation — best have a leading-> , rather than
just the &. We will later on examine the Invoke subroutine (Section9.15.2).

4.3 Date handling routines

Most of the routines that formerly existed here have been removed. It will be
a good idea to eventually make this section richer, with date- and time-handling
routines.

4.3.1 Convert date to seconds

sub ConvDate
{ ($_) = @_;

if (! /ˆ *(\d+)-(\d+)-(\d+) +(\d+):(\d+):(\d+)\.*\d* *$/)
{ return -1;
};

return(Mktime($1,$2,$3, $4,$5,$6));
}

For easy calculations, we convert all dates in format YYYY-MM-DD HH:MM:SS
to a number. The number, shouldonly be used for immediate calculations (e.g.
finding a duration) andnot to store a timestamp in any way. Mktime is part of the
Date-Calc package. We allow a little leeway in the submitted format (M or MM,
for example).

4.3.2 Local time

sub GetLocalTime
{ my ($sec, $min, $hour,

$mday, $mon, $year,
$wday, $yday, $isdst);

($sec, $min, $hour,
$mday, $mon, $year,
$wday, $yday, $isdst) = localtime(time);

$year += 1900; #fix y2k.
$mon ++; #january is zero!
return ("$year-$mon-$mday $hour:$min:$sec");

}

We use the Perl function ‘localtime’ to obtain these values, returning a text
datestamp.

5 SQL/DATABASE SECTION 22

5 SQL/database section

There are five subsections here. First we write some fairly primitive ODBC in-
teraction (including batching of a whole SQL script file), then we build upon
this functionality to create or destroy a whole database, then we explore some
‘database-populating’ code, and penultimately we introduce the ‘layer’ that al-
lows us to script SQL flexibly. The final section is tricky — it’s about storage of
table metadata. By this we mean, information about tables themselves, stored as
they are created!

5.1 Perform SQL commands

5.1.1 SQL execution

Executing an SQL statement is a little cumbersome owing to the need to debug
and check for errors:

sub DoSQL
{ $SQLOK=0; # default ’fail’

my ($myODBC, $SQLstmt, $bugstmt);
($myODBC, $SQLstmt, $bugstmt) = @_;

$_ = $bugstmt;
if (/*/)

{ print LOGFILE "Debug SQL $_:\n$SQLstmt\n" ;
};

if ($BUG & 4)
{ &Print ("\n DEBUG: SQL <$SQLstmt>");
};

my ($retcode);
$retcode = ($myODBC->Sql($SQLstmt));
if ($retcode)

{ my ($sqlErrors);
if ($retcode < 1)
{ $sqlErrors = $myODBC->Error();

print LOGFILE "ERROR SQL failed ($bugstmt): \
return code ’$retcode’ \n\<\<$SQLstmt\>\>\n";

print LOGFILE "Error message: \"$sqlErrors\"\n\n" ;
die "*CRASH* SQL statement failed on $bugstmt!\n";

} else
{ $sqlErrors = $myODBC->Error();

&Warn ($myODBC, 4,
"SQL ret code ’$retcode’ \n<<$SQLstmt>>");

print LOGFILE "Error message: \"$sqlErrors\"\n\n" ;
if ($sqlErrors !˜ /\[911\].+\[1\].+\[0\]/)

{ &Print ("\n WARNING: There was an SQL problem!\n\
\nSQL return code ’$retcode’ \n\

5 SQL/DATABASE SECTION 23

SQL STATEMENT\n:<<$SQLstmt>>\n");
&Alert($MAINW, "SQL error. See EDLOG.LOG");

};
};
$retcode = -1;

} else
{ $retcode = 0; # OK.

$SQLOK = 1;
};

$retcode;
}

We receive three arguments: the ODBC connection, the statement to be sub-
mitted, and a debugging statement. The debugging statement comes into its own
if prefixed by a star (*) — it is then printed out every time the routine is entered.
There is another method for debugging SQL: if a flag is set in the variable BUG,
theneverySQL statement will be printed.

The variable retcode is used to determine whether submission of the SQL
succeeded or failed. This success or failure is returned, but in addition the global
variable SQLOK is set or reset depending on the success or failure of the SQL. A
negative value in the return code signals an error, while a positive non-zero value
is simply a warning.13

5.1.2 Retrieving multiple values using SQL

If we wish to retrieve an array of values (rather than a single row) from an sql
query, then we need a special function. Here it is:

sub ManySQL
{ my ($myODBC, $SQLstmt, $tag);

($myODBC, $SQLstmt, $tag) = @_;
DoSQL ($myODBC, $SQLstmt, $tag);
my($idx, @bigarray);
$idx=0;
while ($myODBC->FetchRow())

{ $_ = $myODBC->Data();
$bigarray[$idx] = $_;
$idx ++;

};
if ($BUG & 4)

{ &Print ("\n ===> { @bigarray }");
};

my($itmz);
$itmz = $#bigarray; # count is +1

13Well, more or less. See the coding for how we fiddle things!

5 SQL/DATABASE SECTION 24

if ($itmz <= 0)
{ if ($itmz < 0)

{ $SQLOK = 0; # signal failure
} else
{ if ((length $bigarray[0]) == 0)

{ $SQLOK = 0;
@bigarray = ();

}; }; };
return(@bigarray);

}

There are several issues with the above. The first is a quirk (I’m not sure
whether it’s ODBC, Perl or Ocelot) where multiple items in a row are inconve-
niently concatenated. We normally fix this by simply intercalating a pipe charac-
ter, so instead of saying SELECT a, b we say SELECT a,’|’ , b.

The second issue is more subtle. Nothing isn’t the same as NULL. Now a
SELECT statement can easily return no result, but if we use MAX and there’s no
result, then Ocelot SQL (at least) returns not ’no result’, but NULL.14 The rather
complex testing at the end is to look for a null item, and if it’s present, force the
array to empty!

5.1.3 Fetch a script line

It’s possible to read in a complete file containing SQL code, and submit the SQL
via ODBC. In doing so, we will use the following small auxiliary function:

sub Fetchaline
{ my ($nxit);

$nxit = 1;
while ($nxit)

{ $_ = <SQLFILE>;
if (! defined)

{ die ("\n *CRASH* Unexpected file end, in SQL batch");
};

if (! /ˆ--/) # if not a comment
{ chomp; # remove cr+lf

$nxit = 0; # force exit
};

if (/ˆ*/) # last line?
{ return ’’;
};

if (length $_ < 1)
{ $nxit = 1; # force continuation

14To my mind, MAX should still return no result, or fail rather than returning NULL.

5 SQL/DATABASE SECTION 25

}; };
return $_; # success

}

We have a tiny unconventional wrinkle, in that the last valid line of such files
must begin with a star (*) character. We return a null string if the end of the file is
encountered.

In more conventional SQL style, we also remove all lines which begin with
the characters-- .15 A line without any characters in it is ignored and the next
line is then fetched.

5.1.4 SQL batching

Here’s the full batching function. We open the file provided, read in statements
(which might occupy several lines), and then submit them using DoSQL. The
assumption is made that the SQL file name submitted has no ‘.SQL’ suffix, and
that it is in thedata subdirectory.

sub BatchSQL
{ my($SQLFILE, $ok, $retcode, $myODBC,

$errorcount, $longline, $Seek, $Repl);
($SQLFILE, $myODBC) = @_;

$errorcount = 0;
$ok = 1;
$SQLFILE = "data/$SQLFILE.SQL";
open SQLFILE, $SQLFILE

or die "*CRASH* Could not open File $SQLFILE :$!\n";
$longline = ’’;

$_ = &Fetchaline;
while (length $_ > 0)

{ if ((/\;\s*$/)) # terminal semicolon?
{ $_ ="$longline$_";

--- START META SECTION -----#
if ($METASTORE) #

{ $longline = $_; #
&StoreMeta($myODBC, $_); #
$_ = $longline; # clumsy #

}; #
--- END META SECTION -------#
DoSQL ($myODBC, $_, "BATCH");
print "."; #indicate progress
$longline = ’’; # clear

} else # still more!

15Anywhere else on a line, these characters arenot seen as a comment.

5 SQL/DATABASE SECTION 26

{ $longline = "$longline$_";
};

$_ = &Fetchaline; # clumsy.
}

close SQLFILE; #close the file
return ($errorcount); #return this value.

}

The above code is clumsy — far more elegant Perl might be to redefine$/ to,
for example,";\n" .

One tricky aspect of the above is that, while we are creating tables, we also
store information about the tables themselves!! This is the meaning of the META
section, which we will soon discuss below, in section5.5.

5.1.5 SQL commit and rollback

The following transactions are clumsy. For example,shouldbe able to say some-
thing along the lines of
$myODBC->Transact("SQL_COMMIT");
. . . but this doesn’t work16, so we use the ugly, frowned upon:

sub Commit
{ my($myODBC);

($myODBC) = @_;
&DoSQL ($myODBC, "COMMIT;", "Commit SQL");
}

sub Rollback
{ my($myODBC);

($myODBC) = @_;
&DoSQL ($myODBC, "ROLLBACK;", "Rollback to last commit");
}

The above routines have the merit of working, but little else to commend them.

5.1.6 Key generation

Autoincrementing keys are not part of core SQL, and every vendor has created
a personalised way of generating such keys. As motivated elsewhere, we create
our own generator table, and then script key creation. At present, we have not im-
plemented a complex system of semaphores to permit multiple near-synchronous

16Look at this, our stupidity, the problem is surely with the ’constant’ SQLCOMMIT?

5 SQL/DATABASE SECTION 27

access to the generator table without collisions.17 Here follows our key generator
code . . .

sub AutoKey
{ my ($myODBC, $ky);

($myODBC, $ky) = @_;
if ($ky =˜ /key/i) # no messing with uKey!

{ die ("Bad Auto Key value");
};

my ($SQLstmt, $keyval);
$SQLstmt = "SELECT u$ky FROM UIDS WHERE uKey = 1";
$keyval = &GetSQL($myODBC, $SQLstmt, "get key value");
$keyval ++; # bump.
$SQLstmt = "UPDATE UIDS SET u$ky = $keyval WHERE uKey = 1";
&DoSQL($myODBC, $SQLstmt, "set new key value");
$keyval --;
return ($keyval);

}

See how we submit the name of a key which is then prefixed with au. This
column is then accessed within the generator table called UIDS, the number cur-
rently there incremented by one, and then we return the original number fetched
(not the incremented value). We forbid the key string from containing the char-
acter sequencekey in any combination of upper and lower case. We only ever
access a single row in UIDS, the one with a uKey value equal to one.

5.2 Database creation or deletion

5.2.1 Creating the database

We now use our new-found SQL batching abilities to create a database. The as-
sumption is that there are two script files in the data subdirectory called META.SQL
and SETUP.SQL. We batch these in turn.

sub MakeDB
{ my ($ocm); # outcome!

print("\n Start meta");
$ocm = BatchSQL ("META", $myODBC);
print ("..Meta tables made");

$METASTORE = 1; # start using meta tables
$ocm = BatchSQL ("SETUP", $myODBC);
$METASTORE = 0; # turn off again (NB)!

17Ultimately such key generation should be atomic. The tricky issues arise not when things
work, but on the rare occasion where a process dies in the ‘middle’ of a transaction.

5 SQL/DATABASE SECTION 28

$ocm = "\n Setup: $ocm";
print ($ocm);

--- START HACK ---
my (@rooms);
@rooms = &ManySQL ($myODBC,

"SELECT srmID, ’,’, srmWard, ’,’, srmText FROM ROOM;",
"get list of all room codes and names");

my($rmdata);
my($id, $room, $ward);
foreach $rmdata (@rooms)

{ $rmdata =˜ /(.+),(.+),(.+)/;
$id = $1;
$ward = $2;
$room = $3;
&DoSQL ($myODBC,

"INSERT INTO BEDSPACE (sID, sRoom, sName) \
VALUES ($id" . "00, $id, ’$ward/$room" . "--’);",

"create a new bedspace");
};

--- END HACK ---

&Commit($myODBC);
Alert($MAINW, "\n Database created.");
print "\n Created!";

}

See how we turn off ‘meta-documentation’ of SQL database table creation
while we’re making the meta files themselves. The batching of the SETUP file is
self-explanatory, but what about the ‘HACK’? This section merely pulls out in-
formation about each room just created, and then creates an equivalent ‘generic’
bedspace.18 The pattern of the room creation is based on the following SQL ‘pro-
totypes’:

INSERT INTO ROOM (srmID, srmText)
VALUES (3101, ’31/1’);
INSERT INTO BEDSPACE (sID, sRoom, sName)
VALUES (310100, 3101, ’31/1--’);

See how the room ID is a compound of the ward (times 10000) plus the room
(times 100) and 00 to signal a generic bedspace.

5.2.2 Kill the database

In a similar fashion to the above, this routine runs a batch file which will destroy
the database. It’s only real use is in the development phase, as for obvious reasons

18It would be unwise for room names to contain a comma.

5 SQL/DATABASE SECTION 29

it is not advisable to have this functionality in a ‘production’ version.

sub KillDB
{

$_ = &Confirm($MAINW,
"DESTROY THE DATABASE? Sure?");

if (! $_) # 1 = yes, 0 = no
{ print "\n Database NOT killed";

return;
};

my ($ocm); # outcome!
$ocm = BatchSQL ("KILL", $myODBC);
$ocm = "$ocm\nKill: $ocm";
print $ocm;
&Commit($myODBC);
Alert($MAINW, "\n Database deleted.");
print "Killed!\n";

}

5.3 Menu population

In this trivial section we invoke several more SQL ‘batch files’ or scripts. These
are concerned with creating the SQL tables which contain information about our
menus, with populating menus with people, and with destruction of such tables
(part of the development process only). The routines are trivial.

5.3.1 MakeMenus

sub MakeMenus
{ my ($ocm); # outcome!

$ocm = BatchSQL ("MENUS", $myODBC);
$ocm = "\n Menu creation: $ocm";
print $ocm;
&Commit($myODBC);
print "\n Menus created!";
Alert($MAINW, "\n Menus created.");

}

5.3.2 ClearMenus

sub ClearMenus
{ my ($ocm);

$ocm = BatchSQL ("CLEARMENUS", $myODBC);
$ocm = "\n Menu clearing: $ocm";
print $ocm;
&Commit($myODBC);

5 SQL/DATABASE SECTION 30

print "\n Menus cleared!!";
Alert($MAINW, "\n Menus cleared!!");

}

5.3.3 MakePeople

sub MakePeople
{ my ($ocm); # outcome!

$ocm = BatchSQL ("PEOPLE", $myODBC);
$ocm = "\n Patient creation: $ocm";
print $ocm;
&Commit($myODBC);
print "\n People created!";
Alert($MAINW, "\n People created");

}

5.3.4 KillPeople

The script name (CLEARPATIENTS) is a legacy. We delete all information about
everybody in the database.

sub KillPeople
{ my ($ocm); # outcome!

$ocm = BatchSQL ("CLEARPATIENTS", $myODBC);
$ocm = "\n Patient clearing: $ocm";
print $ocm;
&Commit($myODBC);
print "\n All people cleared!!";
Alert($MAINW, "\n People cleared");

}

5.4 Submit SQL script queries

In this section we implement the three different types of script SQL commands:

1. QUERY

2. SQLMANY

3. DOSQL

5.4.1 QUERY

QUERY (here implemented as GetSQL) only fetches the first value returned by a
query. Contrast this with SQLMANY.

5 SQL/DATABASE SECTION 31

sub GetSQL
{ my ($myODBC, $SQLselect, $tagname);

($myODBC, $SQLselect, $tagname) = @_;
$SQLOK = 1;
&DoSQL ($myODBC, $SQLselect, $tagname);
my ($newrow);
if ($myODBC->FetchRow())

{ $newrow = $myODBC->Data(); #first data line
} else
{ $SQLOK = 0;

return (’’);
};

if ($BUG & 4)
{ &Print ("\n ===> { $newrow }");
};

return ($newrow);
}

Failure is signalled by returning a null string, as well as resetting SQLOK to
zero. SQL debugging of the result is possible here, by setting a BUG flag bit.

5.4.2 SQLMANY

You might think that we could simply use ManySQL, defined above (Section
5.1.2). The problem is that when we submit pure sql from a script, we can’t expect
the code to contain intercalated pipes or whatever, to address our concatenation
problem (See ManySQL). So we define the following function, otherwise very
similar to ManySQL, which automatically (if clumsily) intercalates the pipes.

sub SQLmanySQL
{ my ($myODBC, $SQLstmt, $tag);

($myODBC, $SQLstmt, $tag) = @_;
my ($preamble);
$_ = $SQLstmt;
/SELECT(DISTINCT)* (\S+) FROM (.+)/i;
$preamble = $1;
$_ = $2;
$SQLstmt = $3;
s/,/,\’\|\’,/g; # add in pipe!
if (! defined $preamble) { $preamble = ""; };
$SQLstmt = "SELECT$preamble $_ FROM $SQLstmt";
DoSQL ($myODBC, $SQLstmt, $tag);
my(@bigarray);
while ($myODBC->FetchRow()) #

{ $_ = $myODBC->Data(); #get data
@bigarray = (@bigarray, split /\|/);

};

5 SQL/DATABASE SECTION 32

if ($BUG & 4)
{ &Print ("\n ===> { @bigarray }");
};

my($itmz);
$itmz = $#bigarray;
if ($itmz <= 0)

{ if ($itmz < 0)
{ $SQLOK = 0; # signal ’problem’
} else
{ if ((length $bigarray[0]) == 0)

{ $SQLOK = 0;
@bigarray = ();

}; }; };
return(@bigarray);

}

The regex above should probably be diligently examined for potential prob-
lems with the pipe insertion. Otherwise, comments are as for ManySQL.

5.4.3 DOSQL

Implementation of this command is straightforward, as we’ve already defined it
as DoSQL above (Section5.1.1).

5.5 Storage of table metadata

This is sneaky. For relevant tables we actually look at the SQL in a simple fashion,
and then record information from this processing in SQL tables! This trick is
invaluable when we wish to make our PDA database. In the following we scan
for:

CREATE TABLE tablename (item , ... , item)
which we then parse. Otherwise, we simply ignore everything and return.

sub StoreMeta
{ my ($myODBC);

($myODBC, $_) = @_;
if (! /\s*CREATE\s+TABLE\s+(\w+)\s*\((.+)\)/i)

{ return;
};

my ($tblname, $mor, $id);
$tblname = $1;
$mor = $2;
print LOGFILE "\n\n Table name: <$tblname>";
$id = &AutoKey($myODBC, ’xTable’); # make key
DoSQL ($myODBC,

5 SQL/DATABASE SECTION 33

"INSERT INTO xTABLE (xTaKey, xTaName) \
VALUES ($id, ’$tblname’);",

"Document table");
$_ = $mor;
s/\((\d+),*(\d*)\)/\[$1:$2\]/g; # replace (n,m) with [n:m]
s/\s+/ /g; # fix whitespace repeats
s/\(\s*(\w+)\s*,\s*(\w+)\s*\)/($1!comma!$2)/ig;
my ($rest);
while (/\s*(\w+\s+\w+[ˆ,]*),(.+)/)

{ $rest = $2;
ParseCreateTable($myODBC, $id, $1);
$_ = $rest; # move to next item

};
ParseCreateTable($myODBC, $id, $_);

}

Note that we don’t cover absolutely every option, for example, compound
primary keys will muck things up,19 and obviously we encounter problems with
data types we don’t support. Here’s the subsidiary but important ParseCreateTable
routine. It’s clunky and too long:

sub ParseCreateTable
{ my($myODBC, $tblkey);

($myODBC, $tblkey, $_) = @_;
print LOGFILE "\n-->$_";

my ($name, $type);
my ($col, $tbl);
my ($len, $prec);
my ($t); # single char type
my ($chk);
my ($lid, $licol, $litbl);
my ($default);
if (/\s*constraint\s+(.+?)\s+(.+)/i)

{ $name = $1;
$_ = $2; # PRIMARY KEY, FOREIGN KEY or CHECK:
if (/ˆcheck\s+\((.+)\)/i)

{ $_ = $1;
if (/([ˆ\s]+)\s+is not null\s*/i) # ugly

{ $col = $1;
print LOGFILE

"\n >CHECK !0: Name:$name Col:$col";
$chk = ’X’;

}
elsif (/([ˆ\s]+)\s+is null\s*/i)

{ $col = $1;
print LOGFILE

19One of our idiosyncratic conventions is that we don’t allow these, anyway

5 SQL/DATABASE SECTION 34

"\n >CHECK =0: Name:$name Col:$col";
$chk = ’N’;

} else
{ print "\n UNSUPPORTED CHECK: $_";
};

$licol = &GetSQL ($myODBC,
"SELECT xCoKey from xCOLUMN WHERE xCoName = ’$col’ \

AND xCoTable = $tblkey;",
"identify relevant column");

if ($licol > 0) # fail if not found
{ $lid = &AutoKey ($myODBC, ’xLimit’);

&DoSQL ($myODBC,
"INSERT INTO xLIMIT (xLiKey, xLiName, xLiType, xLiColumn) \

VALUES ($lid, ’$name’, ’$chk’, $licol);",
"record CHECK constraint"); # ’N’= is null, ’X’ = not
print ("+");

} else
{ print ("\n ERR: Column not found: <$col>");
};

} elsif (/ˆprimary\s+key\s+\((.+)\)/i)
{ $col = $1;

print LOGFILE "\n >1ARY: Name: $name Col:$col";
$licol = &GetSQL ($myODBC,

"SELECT xCoKey from xCOLUMN WHERE xCoName = ’$col’ \
AND xCoTable = $tblkey;",

"identify relevant column");
if ($licol > 0)
{ $lid = &AutoKey ($myODBC, ’xLimit’);

&DoSQL ($myODBC,
"INSERT INTO xLIMIT (xLiKey, xLiName, xLiType, xLiColumn) \

VALUES ($lid, ’$name’, ’P’, $licol);",
"record primary key constraint"); # ’P’ = 1ary key

&DoSQL ($myODBC,
"UPDATE xCOLUMN SET xCoType = ’I’ WHERE xCoKey = $licol;",
"adjust key type"); # our 1ary keys all type I (!!)

print ("+");
} else
{ print ("\n ERR: Column not found: <$col>");
};

} elsif (/ˆforeign\s+key\s+\((.+)\)\s+references\s+(.+)/i)
{ $col = $1;

$tbl = $2;
print LOGFILE

"\n >FOREIGN: Name:$name Col:$col Table:$tbl";
$licol = &GetSQL ($myODBC,

"SELECT xCoKey from xCOLUMN \
WHERE xCoName = ’$col’ \
AND xCoTable = $tblkey;",

5 SQL/DATABASE SECTION 35

"identify stated column");
$litbl = &GetSQL ($myODBC,

"SELECT xTaKey from xTABLE WHERE xTaName = ’$tbl’;",
"identify table reference");

if (($licol > 0) && ($litbl > 0)) # fail if not found
{ $lid = &AutoKey ($myODBC, ’xLimit’);

&DoSQL ($myODBC,
"INSERT INTO xLIMIT \

(xLiKey, xLiName, xLiType, xLiColumn, xLiTable) \
VALUES ($lid, ’$name’, ’F’, $licol, $litbl);",

"record foreign key constraint"); # ’F’ = foreign key
&DoSQL ($myODBC,

"UPDATE xCOLUMN SET xCoType = ’I’ \
WHERE xCoKey = $licol;",

"adjust key type");
print ("+");

} else
{ print ("\n ERR: Column not found: <$col>");
};

} else
{ print "\n UNKNOWN: <$_>";
};

} else
{ /\s*([ˆ\s]+)\s+([ˆ\s\[]+)(.*)/;

$name = $1;
$type = $2;
$_ = $3;
if (/\[(.+)\:(.*)\]/)

{ $len = $1;
$prec = $2;

} else
{ $len = "??";

$prec = "??";
};

$default = 0;
if (/default\s+(.+)/)

{ $default = $1;
print LOGFILE ("\n DEFAULT: $default");

};
if (length $prec < 1)

{ $prec = 0;
};

if ($type =˜ /ˆfloat$/i)
{ $len = 8;

$prec = 0;
$t = ’F’;

}
elsif ($type =˜ /ˆdate$/i)

5 SQL/DATABASE SECTION 36

{ $len = 8;
$prec = 0;
$t = ’D’;

}
elsif ($type =˜ /ˆtime$/i)

{ $len = 12; # ours
$prec = 6; #
$t = ’T’;

}
elsif ($type =˜ /ˆtimestamp$/i)

{ $len = 20;
$prec = 6; # ???
$t = ’S’;

}
elsif ($type =˜ /ˆvarchar$/i) # ? CHARACTER VARYING?

{ $t = ’V’;
}

elsif ($type =˜ /ˆdecimal$/i)
{ $t = ’N’;
} else
{ print "\n BAD TYPE: ’$type’ forced to V";

$t = ’V’;
};

print LOGFILE "\n > Name:$name Type:$type Len:$len Pr:$prec";
MUST still fix: sort out DEFAULT ...
my($id);
$id = &AutoKey($myODBC, ’xColumn’);
DoSQL ($myODBC,

"INSERT INTO xCOLUMN \
(xCoKey, xCoName, xCoType, xCoSize, xCoScale, xCoTable)\
VALUES ($id, ’$name’, ’$t’, $len, $prec, $tblkey)",

"record column");
if ($default)

{ &DoSQL ($myODBC,
"UPDATE xCOLUMN SET xCoDefault = ’$default’ \

WHERE xCoKey = $id",
"fix default");

};
print ("+");

};
};

The whole of the above could profitably be rewritten, devolving parts to sim-
pler subsidiary functions. Someday. See how we print useful debugging informa-
tion to LOGFILE.

6 MENU CREATION 37

6 Menu creation

6.1 GoMenu

The principal routine. Cumbersome and badly written. We will break it up into
bite-sized chunks as follows:

6.1.1 Entering GoMenu

GoMenu accepts a handle on the database, the name of a menu (menu1), and a Tk
window (newW). If the submitted ’name’ is numeric, GoMenu uses the number
to pop the stack of menus appropriately, goingback and enabling the relevant
previous menu. Otherwise it just queries the database, finds menu components
and displays them in a newly created menu. X, the menu subject, is pushed or
popped appropriately.

sub GoMenu
{ my ($myODBC, $menu1, $newW);

($myODBC, $menu1, $newW)=@_;
if ($BUG & 8) { &Print ("\n\n NEW MENU <$menu1> "); };
if ($menu1 eq ’MAIN’) # if at start

{ $MAINW->geometry(’40x20’); # make MAINW tiny
$MAINW->geometry(’+600+0’); # move it.

};
my ($menuname);
$menuname = $menu1;
@CMDSTACK = (); # destroy stack!!

The above introductory code allows for debugging (using a bit flag in BUG),
and makes MAINW really tiny, if at the start. See how we delete everything on
CMDSTACK, which constrains us to really tight, modular menu coding!

6.1.2 Should we pop?

Here we address the issue of a numeric ‘menu name’, actually a command to go
back to a prior menu.20 MENU(1) takes us back one menu, MENU(2) takes us
back two, and so on. The popped menus are discarded completely. MENU(0)
reloadsthe current menu!

20Initially we had this as a negative number, but, mainly for reasons of PDA program design,
we have now revised this convention. From now on, the use of negative numbers is deprecated
(but, for now, tolerated). If you want to go back one menu, you submit just one, not negative one.

6 MENU CREATION 38

$_ = $menuname;
if (/ˆ-*(\d+)$/) # if numeric, usually 1

{ my ($mc);
$mc = $1; # trim off -ve
$mc ++;
while ($mc > 0)

{ $menuname = pop (@MENUS);
$NEWXPARAM = pop (@X);
$mc --;

};
}

elsif (/ˆ0$/) # MENU(0) reloads!
{ $menuname = pop (@MENUS);

$NEWXPARAM = pop (@X);
};

6.1.3 Clear local variables?!

Here we call two subsidiary routines, first storing away the local name values (for
possible later use), then clearing them.21 And that’s the whole of this tiny section.

&KeepLocalNames();
&ClearLocalNames();

6.1.4 Run associated script

If the menu has an associated initialisation script, now’s the time to run it:

my($r);
$r = 0; # default ok
$_ = &GetSQL ($myODBC,

"SELECT iInitial FROM ITEM WHERE iName = ’$menuname’",
"get menu startup script");

if (length $_ > 1)
{ $XPARAM = $NEWXPARAM;

if ($BUG == 16)
{ &Print ("\n DEBUG: MENU INI SCRIPT <$_> \

menu <$menu1> ($XPARAM)");
};

push (@CMDSTACK, $menu1);
$r = &RunWholeScript ($myODBC, $_, $newW, -1, -1);
pop(@CMDSTACK);
if ($r < 0) # if script execution failed

{ $menuname = pop (@MENUS);
push (@MENUS, $menuname);

21Look into moving this down a bit later? NO!

6 MENU CREATION 39

$XPARAM = pop (@X);
push (@X, $XPARAM);
$NEWXPARAM = $XPARAM;
&RestoreLocalNames();
return; #fail!

};
};

$XPARAM = $NEWXPARAM;

We obtain the iInitial script if it exists22 We then move in the new X (subject)
who is waiting in the wings, push themenu nameonto the stack, and run the full
script.23 After the script has run, we pop the stack.24

See how, if the scriptfails, then loading of the menu is completely aborted! In
the process of ‘aborting’ we also restore the menu name and X. We even restore
the local names (that’s in fact why we stored them above) and NEWXPARAM,
which could conceivably have been altered by the script before it died.

Finally in this section, we again move NEWXPARAM into XPARAM. This
allows the initialisation script to alter the XPARAM value!

6.1.5 Prepare to create

We next pull out basic menu parameters, after a bit of cleaning up (ClearGroups).

my($mTitle);
my($mCode);
&ClearGroups();
$_ = &GetSQL($myODBC, "SELECT iID, ’|’, iText FROM ITEM \

WHERE iType = 20 AND iName = ’$menuname’",
"Get menu ID");

/(.+)\|(.+)/;
$mTitle = $2;
$mCode = $1;
my ($mX, $mY, $mW, $mH);
$_ = &GetSQL($myODBC,

"SELECT miX, ’,’, miY, ’,’, miW, ’,’, miH FROM MENUITEMS \
WHERE miMenu = $mCode AND miItem = $mCode;",

"get menu parameters");
/(.+?),(.+?),(.+?),(.+)/;
$mX = $1;

22There is a potential problem if we have been unwise enough to create two menus with the
same iName (which we haven’t forbidden in the database design). Also note that a single-character
script will fail.

23Pushing the name allows the script to know which menu it’s in!
24At present, we don’t check that the menu name is still on the stack. We might enforce this

constraint!

6 MENU CREATION 40

$mY = $2;
$mW = $3;
$mH = $4;

$mX += $BASEX;
$mY += $BASEY;
$mW *= $BASEW;
$mH *= $BASEH;
$mX = int($mX);
$mY = int($mY); # pixels
$mW = int($mW);
$mH = int($mH);
my ($oldW);
$oldW = $newW;

We identify the menu coordinates, width and height within MENUITEMS
using our peculiar convention that a ’self-referential’ menu item is actually a note
about these parameters!

We adjust the coordinates and dimensions using the BASE values, then con-
verting these adjusted floating point values to pixel values.

We also keep a record of the previous window. Later, we will close the previ-
ous window, unless of course it was the main window.

6.1.6 Destroy old widgets

Initially I went through a laborious process of disabling the bindings on widgets
in the old menu. It’s far easier to simply destroy the lot of them. We won’t need
them, as we will eventually close their parent, only re-creating everything if we
come back to the parent window.25

while ($ICOUNT > 0)
{ $ICOUNT --;

$TKITEMS[$ICOUNT]->destroy;
};

6.1.7 Do it!

At last, we can actually create the menu, and all of its components. The following
section calls upon the clumsy SubMenu function to do its dirty work in creating
menu components.

$newW = $MAINW->Toplevel(); # create new menu
$newW->geometry("+$mX+$mY");
$newW->geometry("$mW" . "x$mH");

25We only delete the parent later, to prevent an irritating flicker.

6 MENU CREATION 41

$newW->title($mTitle);
push (@MENUS, $menuname);
push (@X, $XPARAM);

$ICOUNT = &SubMenu($myODBC, $mCode, $newW, 0, 0, 0);
&FixGroups($TOPGROUP);

When we create the new menu, we also push X and the menu name. This
action allows easy retrieval of these vital parameters, simplifying refreshing of a
menu using MENU(0).

6.1.8 Close prior window

if (! ($oldW eq $MAINW))
{ &ExitWindow ($oldW);
};

$newW->focus; # set focus to this window
}

Not only do we destroy the old window, we also force the focus to the new
one. A wise idea.

6.2 Subsidiary functions

This section is taken up by the monstrous SubMenu, which we’ll have to break up
into chunks and plod through.

6.2.1 SubMenu

SubMenu accepts a handle on the database, the unique ID of the menu itself
(mCode), the relevant window (newW), an X and Y displacement within the cur-
rent menu used for offsetting components, and the final parameteri , which is an
index into the global TKITEMS. When first invoked by GoMenu, the last three
parameters are all zero.

sub SubMenu
{ my ($myODBC, $mCode, $newW, $X0, $Y0, $i);

($myODBC, $mCode, $newW, $X0, $Y0, $i) =@_;
my($j); # record item creation success

6 MENU CREATION 42

6.2.2 Find all items

Next we retrieve an array of number pairs. Each element of the array is made
up of the id of the ITEM itself, and the unique ID of the row in MENUITEMS
describing the item, separated by a comma.26

my(@items);
(@items) = &ManySQL ($myODBC,

"SELECT miItem, ’,’, miUid from MENUITEMS \
WHERE miMenu = $mCode \
AND miItem <> $mCode \
ORDER BY miGroup, miOrder",

"get items for this menu");
my($item, $miX, $miY, $miW, $miH, $miGroup,

$iInitial, $iResponse, $iScript, $miEnabled);
my($iType, $iText, $iList, $iLines);
my($both, $iu);
my($miInitial);

We exclude the case where miItem is equal to mCode, as this row refers to the
menu itself. We also group the items, and order them in ascending order. In the
last part of this section we define a whole bunch of variables used in the next one.

6.2.3 Create items one by one

We use the item array to create each item in turn. Theforeach statement is
bulky and offensive, so we’ve broken it up:

foreach $both (@items)
{ $both =˜ /(.+),(.+)/;

$item = $1;
$iu = $2;
$_ = &GetSQL ($myODBC,

"SELECT miX, ’,’, miY, ’,’, miW, ’,’, miH, ’,’, \
miGroup, ’,’, miEnabled, ’,’, miInitial \
from MENUITEMS \
WHERE miMenu = $mCode AND miItem = $item",

"get local item attributes");
if (! /(.+?),(.+?),(.+?),(.+?),(.+?),(.),(.*)/)

{ &Alert ($MAINW, "Menu parameter error: <$_>");
};

$miX = $1;
$miY = $2;
$miW = $3;
$miH = $4;

26Hey, let’s read this line again :-)

6 MENU CREATION 43

$miGroup = $5;
$miEnabled = $6;
$miInitial = $7;
$_ = &GetSQL ($myODBC,

"SELECT iType, ’@|’, iText, ’@|’, iList, ’@|’, iLines, \
’@|’, iInitial, ’@|’, iResponse, ’@|’, iScript \
from ITEM WHERE iId = $item",

"get general attribs of this item");
if (! /(.+?)\@\|(.*?)\@\|(.*?)\@\|(.*)\@\|(.*?)\@\|(.*?)\@\|(.*)/)

{ &Alert($MAINW, "Bad item details, <$_>");
};

$iType = $1;
$iText = $2;
$iList = $3;
$iLines = $4;
$iInitial = $5;
$iResponse = $6;
$iScript = $7;
if (length $miInitial > 0) # OVERRIDE

{ $iInitial = $miInitial;
};

Although long, the above is fairly straightforward. We are simply fetching
item parameters at this stage. The only part I’m really dysphoric about is the last
if statement, where we override the item script with the miInitial value.

6.2.4 Identify a monomorphic table

Here we invoke Make1Table if we have a monomorphic table (type 9):

if ($iType == 9) # monomorphic
{ $i += &Make1Table ($myODBC, $i, $newW,

$item, $iLines,
$miX+$X0, $miY+$Y0, $miW, $miH,
$iInitial, $iResponse);

}

There is scope for improvement of monomorphic tables. Should we, for ex-
ample have two variants, one which fits into a certain number of lines, another
which is of invariant size?27 See how we make(x, y) relative to X0 and Y0 —
this is a theme throughout the following code.

27Another question is whether we should submit iScript to Make1Table.

6 MENU CREATION 44

6.2.5 Sub-menu

Next, is it a menu contained within a menu? If so, we not only have to create that
menu as a component within the current one, but also run the associated script!
Tricky.

elsif ($iType == 20) # a (sub)menu!
{ my($scrp, $snam, $r);

$r = 1; # default to ’ok’
$scrp = $iInitial;
$snam = &GetSQL ($myODBC, "SELECT iName FROM ITEM \

WHERE iId = $item",
"get menu name");

if (length $scrp > 1)
{ if ($BUG == 16)

{ &Print ("\n DEBUG: Submenu ini script: <$_>");
};

push (@CMDSTACK, $snam); # push name
$r = &RunWholeScript ($myODBC, $scrp, $newW,

-1, -1);
pop(@CMDSTACK);

};
if ($r != 0) # [unless stopped]

{ $i = &SubMenu($myODBC, $item,
$newW, $miX+$X0, $miY+$Y0, $i);

}; }

There are wrinkles. We examine the valuer returned by RunWholeScript. If
it’s zero (’STOP’) then we donot recursively invoke SubMenu.28 Otherwise, we
do. Clearly to be used with caution.

See how, if we invoke SubMenu we submiti , the current item count, and
receive an updated copy. Remember that this item count indexes into TKITEMS.
We donot pass the current height and width as we donot scale items within the
sub-menu, relative to the current one!

As usual, we have debugging based upon bit flags within BUG. As before,
running the script is preceded by a push of the menu name, and we pop the value
back off the stack without checking its validity.29

6.2.6 Identify a polymorphic table

If a polymorphic table (type 8), invoke MakeTable. Simple, on the face of it.

28Previously, we failed on ’FAIL’ but this was too catastrophic, so we now ’STOP’ to prevent
submenu creation.

29Might be wise to revise this approach, see similar note above!

6 MENU CREATION 45

elsif ($iType == 8) # poly table
{ $i = &MakeTable ($myODBC, $i, $newW, $item, $iLines,

$miX+$X0, $miY+$Y0, $miW, $miH,
$iInitial, $iResponse, $iText);

}

All table creation needs extensive revision (See below).

6.2.7 Just make an item!

In the following we simply create one item that isnot a menu or table. The Cre-
ateOneItem routine is another large chunk of code. The variablej is used to test
for success or failure of this routine.

else { $j = &CreateOneItem ($myODBC, $i, $newW,
$miX+$X0, $miY+$Y0, $miW, $miH, $miGroup,
$iInitial, $iResponse, $iScript, $iType,
$iText, $iList, $iLines, $miEnabled,
$iu, $iText, ’’);

if ($j) # 0 signals failure of item creation.
{ $GROUPS[$i] = - ($miGroup);

if (($BUG & 32) && ($miGroup > 0))
{&Print (" grp($i) ’$iText’->$miGroup ");
};

if ($miGroup > $TOPGROUP)
{ $TOPGROUP = $miGroup;
};

$i ++;
}; }; };

return $i;
}

If we managed to create an item, then we bump the variablei by one to move
to a new index in TKITEMS.

Thegroupingis quite quaint. We store anegativevalue in the GROUPS array
for the current item. At theendof everything we invoke FixGroups, which then
creates links all related items in a single group together, daisy-chaining each item
to the next one within that group. The reason why we store a negative value now
becomes apparent — when we have resolved an item, it will be clearly identified
as such by having apositivevalue associated with it. The positive value is the
index of the next item in the chain!

At the end of everything we return the value ofi , because we must do so in
the recursive invocation of SubMenu. And that’s it for SubMenu. Whew!

6 MENU CREATION 46

6.2.8 ExitWindow

The following is an atavistic remnant, left over from a much larger precursor rou-
tine. Can probably be disposed of.

sub ExitWindow
{ my($thisW);

($thisW) = @_;
$thisW->destroy(); #

}

6.3 Grouping

We introduced the idea of grouping above in section6.2.7. Let’s flesh this concept
out and examine the coding. It’s important to us to be able to group menu items
together. For example, we need to be able to grouppushbuttons, so that if we
click on one, the others are all cleared.

The logical way to group items is to make each item in a group refer to the
next in that group, in a cyclical fashion. The array GROUPS stores these ref-
erences. We have only two grouping functions, the trivial ClearGroups, and the
more involved FixGroups which associates grouped items within GROUPS.

6.3.1 ClearGroups

This simply clears the GROUPS array. Later, as we define new items, the magic
of Perl creates the elements.

sub ClearGroups
{ $TOPGROUP = 0;

@GROUPS = ();
return;

}

6.3.2 FixGroups

More challenging. We work through GROUPS, associating like items. The rou-
tine is currently slow,O(n2), but optimisation should be fairly easy.30 At present
we submit the highest group number as the sole argument of FixGroups. The
usage of the global TOPGROUP is rather clumsy.

sub FixGroups
{ my($maxgrp);

30Helped by prior sorting by group.

6 MENU CREATION 47

($maxgrp) = @_; # submit highest group index
if ($BUG & 32)

{ &Print ("\n Debug: top group is $maxgrp");
};

my ($max);
$max = $#GROUPS; # get index of last group item
my($g, $prev, $frst, $i);
$g = 1;
while ($g <= $maxgrp)

{ $i = 0;
$frst = -1;
while ($i <= $max)

{ if (- ($GROUPS[$i]) == $g) # if the group
{ if ($frst == -1)

{ $frst = $i;
if ($BUG & 32)

{ &Print ("\n Debug: group=$g($i");
};

} else
{ $GROUPS[$i] = $prev;

if ($BUG & 32)
{ &Print (", $i");

}; };
$prev = $i;

};
$i ++;

};
if ($frst != -1)

{ $GROUPS[$frst] = $prev; # wrap
if ($BUG & 32)

{&Print (")");
}; };

$g ++;
};

return;
}

7 TABLES 48

7 Tables

This section is devoted to the creation of the two types of table we employ -
monomorphic, made up of identical elements (e.g. a whole lot of buttons), and
the more useful polymorphic table, made up of columns of similar elements. Each
element in arow of a polymorphic table bears a fixed relationship to a particular
database ID, for example, an ID of a person.

7.1 Polymorphic tables

These are more useful than monomorphic tables. The following routine is cum-
bersome and badly written. For clarity, we have broken it into chunks.

7.1.1 MakeTable

The MakeTable routine is cumbersome. It accepts an ODBC handle,idx which
is the current number of items already created31, a Tk window newW, the ID of
the table item itself (tbl), the maximum number of table rows displayed (tLines),32

as well as(x, y), width and height values, and two scripts! The scripts are initiali-
sation (tIni), and response (tResp) scripts. Finally, there is default text (tDefault),
to be used if no rows can be found for this table.

sub MakeTable
{ my ($myODBC, $idx, $newW, $tbl, $tLines, $tX, $tY, $tW, $tH,

$tIni, $tResp, $tDefault);
($myODBC, $idx, $newW, $tbl, $tLines, $tX, $tY, $tW, $tH,

$tIni, $tResp, $tDefault) = @_;
my ($j); # flag for item creation

7.1.2 Identify columns

First we find the columns.

my (@columns);
(@columns) = &ManySQL ($myODBC,

"SELECT irItem FROM ICOLTABLE \
WHERE irTBL = $tbl ORDER BY irOrder;",

"get all columns");
if ($BUG & 2)

{ &Print ("\n DEBUG: COL CODES <@columns>");
};

31This value is returned after being incremented by MakeTable.
32This number includes the header line!

7 TABLES 49

7.1.3 Get row V values

We run the initialisation script to obtain unique values, one per row.

my (@rows);
my ($rowcount);

@CMDSTACK = ();
&RunWholeScript ($myODBC, $tIni, $newW, -1, -1);
@rows = @CMDSTACK; # whole!
$rowcount = 1 + $#rows;
if ($BUG & 2)

{ &Print ("\n DEBUG: items <@rows>, row count $rowcount");
};

if ($rowcount > ($tLines-1))
{ $rowcount = ($tLines-1);
};

@CMDSTACK = (); # clear it

If there are more rows than can be displayed (rowcount is over the number of
lines tLines, less 1 for the top line), then we limit the row count.

We should probably truncate therows array (cutting the length to rowcount)
but don’t do this at present.

7.1.4

Next, we prepare a few variables (therowcopy array is used below to allocate
valueswithin a column). The pixel height of a row isiH .

my (@rowcopy);
my ($itmcnt); # row count down
my ($col);
my ($iX, $iY, $iW, $iH, $irEnabled);
$iH = $tH/($tLines); # row height
$iX = $tX;
if ($rowcount == 0) # no rows

{ $j = &CreateOneItem ($myODBC, $idx, $newW,
$iX, ($tY+$iH), $tW, $iH, 0, ’’, ’’, ’’,
1, $tDefault, ’’, 1, 0, 0, $tDefault, ’’);
if ($j)

{ $GROUPS[$idx] = 0; # headers are not grouped.
$idx ++;

};
};

If there are no data rows, then we insert the default message instead, as a text
label.

7 TABLES 50

7.1.5 Get column details

Now, for each column we will find its details.

foreach $col (@columns) # for each column
{ @rowcopy = @rows;

$itmcnt = $rowcount;
$iY = $tY; # start at top of column

extract column details:
my ($iType, $iList, $iInitial, $iResponse, $iScript);
my($iText, $oText);
$_ = &GetSQL ($myODBC,

"SELECT iType, ’@|’, iText, ’@|’, iList, \
’@|’, iInitial, ’@|’, iResponse, ’@|’, iScript \
from ITEM WHERE iId = $col",

"get attribs of COLUMN");
/(.+?)\@\|(.*?)\@\|(.*?)\@\|(.*?)\@\|(.*?)\@\|(.*)/; # [1]

$iType = $1;
$iText = $2;
$oText = $iText;
$iList = $3;
$iInitial = $4;
$iResponse = $5;
$iScript = $6;

my($irPaper);
$_ = &GetSQL ($myODBC,

"SELECT irFraction, ’,’, \
irName, ’,’, irEnabled, ’,’, irPaper \
FROM ICOLTABLE \
WHERE irTBL = $tbl AND irItem = $col;",

"get fractional width of item");
/(.+?),(.*),(.),(.*)/;
$iW = $1 * $tW; # pixel width
$irEnabled = $3;
$irPaper = $4;
$_ = $2; # irName
if (/.+/) # if column name exists

{ $iText = $_; # overwrite
};

There are several points of interest in the above. In the line labelled[1]
we separate items with@| rather than using a simple pipe, as we also use pipes
within iList components, which would cause confusion. See section5.1.2for a
discussion of why we use pipes, anyway.

The Perl in this kludgey old routine is poor at best. The variableoText is
used below by CreateOneItem, but only has meaning for pushbutton creation.

7 TABLES 51

7.1.6 Make column header

We now create a column header on screen (a label, i.e. a type 1 item).

$j = CreateOneItem ($myODBC, $idx, $newW,
$iX, $iY, $iW, $iH, 0, ’’, ’’, ’’,
1, $iText, ’’, 1, 0, 0, $iText, ’’);

if ($j)
{ $GROUPS[$idx] = 0; # not grouped

$iY += $iH; # move down to
$idx++; # draw next item

};

There is no response script for the label; at some stage we might consider
having a response, so that, for example, clicking will sort the table by the column
values in ascending or descending order!

The if ($j) section makes sure that headers aren’t grouped (have a zero
group value).

7.1.7

We next make the rest of the column, item by item. This creation involves de-
termining the value foreach item using an SQL query — CreateOneItem will
perform the invocation if iInitial is not null.

my ($row, $c); # c is row count
$c = 0; # [2]
foreach $row (@rowcopy)

{ if ($itmcnt > 0) # if more lines
{ $itmcnt --;

$c ++;
push (@CMDSTACK, $row);
my ($iv); # HIDEOUS!
$iv = $row;
$VVALS[$idx] = $row;
$j = &CreateOneItem ($myODBC, $idx, $newW,

$iX, $iY, $iW, $iH,
0, $iInitial, $iResponse, ’’,
$iType, $iv, $iList, 1,
$irEnabled, 0, $oText, $irPaper);

if ($j)
{ if ($iType == 4) # pushbutton!

{ $GROUPS[$idx] = -($c);
if ($BUG & 32)

{ &Print (" grp($idx)->$c");
};

if ($c > $TOPGROUP)

7 TABLES 52

{ $TOPGROUP = $c;
};

} else
{ $GROUPS[$idx] = 0;
};

$idx ++;
};

$iY += $iH; # down to draw next
}; };

$iX += $iW; #right to next column
};

return ($idx);
}

There are a few clumsy hacks: the variableiv becomes the row parameter of
CreateOneItem, and we have to initialise theV array (VVALS) because a script
may reference V. We also push the row onto the stack, as this too may be used by
the initialisation script! We also have to group pushbuttons! For each item created
we also bumpidx . The line marked[2] is a problem.33

All in all, a whole lot of low-grade nastiness makes up this section. At the end,
we simply return the new, updated item count (idx).

7.2 Monomorphic tables

Here we make the clumsy monomorphic table. Each button (or other component,
all of the same type) has its own unique V value and response. In the initial version
of this table, we had one column specifier for each column, but such an approach
isn’t only clumsy — it also goes against the spirit of such a table. We should have
only one column, and duplicate it as needed!

[FIX ME: THIS IS STILL UNFIXED]

7.2.1 Make1Table

Make1Table accepts parameters similar to, but simpler than, MakeTable (Sec-
tion 7.1.1). We similarly have an ODBC handle, item count (idx), Tk window
(newW), the table ID, a line count and various coordinates and widths, as well as
two scripts.

sub Make1Table
{ my ($myODBC, $idx, $newW, $tbl, $tLines, $tX, $tY, $tW, $tH,

$tIni, $tResp);
($myODBC, $idx, $newW, $tbl, $tLines, $tX, $tY, $tW, $tH,

33What about pushbuttons? Explore.

7 TABLES 53

$tIni, $tResp) = @_;
my ($i);
$i = $idx;
MUST STILL FIX THIS SECTION [$jvs]
my (@columns);

(@columns) = &ManySQL ($myODBC,
"SELECT irItem FROM ICOLTABLE \

WHERE irTBL = $tbl ORDER BY irOrder;",
"get all columns");

my($SQLstmt);
$SQLstmt = ’’; # initialise
my (@rows);
my($itmcnt);
$itmcnt = 0;
@CMDSTACK = (); # clear stack

7.2.2 [to fix]

[FIX ME: THIS IS STILL UNFIXED]

&RunWholeScript ($myODBC, $tIni, $newW, -1, -1);
@rows = @CMDSTACK;
push (@rows, -1); # [3]
$itmcnt = $#rows; # [should this be +1 ???]

The RunWholeScript invocation above is vulnerable if the script does nasty
things to the stack.34

The line labelled[3] above illustrates a subtle flaw in the Ocelot database (it
may be present elsewhere). Logically, a list is composed of zero or more items,
and functions which operate on a list should accept this definition. In Ocelot, if
we apply IN to lists of under 2 items, it balks. To permit identification of a single
row, we push -1 onto the stack, so an IN statement will still succeed provided there
is at least 1 row!35

7.2.3 [to fix]

[FIX ME: THIS IS STILL UNFIXED]

b. Get column params:
my (@ivals);
my ($iX, $iY, $iW, $iH, $irEnabled);
offset of individual item will be iX, iY, and width and height will be iW, iH:

34We should also check out the case where there is no initialising script invocation of SQL.
35There is no danger of this being mis-identified as a key, as we never use negative numbers as

keys!

7 TABLES 54

$iX = $tX;
$iH = $tH/$tLines; # for now, each row will have same height [& prob. forever]

my ($col);
my ($iv);
my ($ilimit); # limiting count (row count, or if monomorphic, item count)
$ilimit = $itmcnt;

my ($colw, $colcount);

7.2.4 [to fix]

[FIX ME: THIS IS STILL UNFIXED]

foreach $col (@columns) # for each column component in the table
{

$iY = $tY; # start at top of column
$_ = &GetSQL ($myODBC,

"SELECT irFraction, ’,’, \
irName, ’,’, irEnabled FROM ICOLTABLE WHERE irTBL = $tbl AND irItem = $col;",

"get fractional width of item");
/(.+?),(.*),(.)/; #pull out fraction, column name, enabled or not!
$iW = $1 * $tW; # convert from fractional to actual width
$_ = $2;
$irEnabled = $3;
my($iText);
$iText = ’’;
if (/.+/) # if exists

{ $iText = $_;
};

my ($iType, $iList, $iInitial, $iResponse, $iScript);
$_ = &GetSQL ($myODBC,

"SELECT iType, ’@|’, iText, ’@|’, iList, \
’@|’, iInitial, ’@|’, iResponse, ’@|’, iScript \
from ITEM WHERE iId = $col",

"get attribs of COLUMN");
/(.+?)\@\|(.*?)\@\|(.*?)\@\|(.*?)\@\|(.*?)\@\|(.*)/;
note use of @| rather than comma, as SQL statements may contain commas!!
cant use simple pipe, as we use this in iList statement!
IN FACT, WE WILL DISCARD iInitial et seq and just use ONE SQL STATEMENT
PER TABLE. INFINITELY PREFERABLE!

$iType = $1;
if (length $iText < 1) # if overriding column name exists already, preferentially use that!

{ $iText = $2; # buuut otherwise use default field name.
};

$iList = $3;
$iInitial = $4;

7 TABLES 55

$iResponse = $5;
$iScript = $6;
$iResponse = $tResp; #force to standard table response if monomorphic.

7.2.5 [to fix]

[FIX ME: THIS IS STILL UNFIXED]

create several items:
my ($icnt);
$icnt = 0;
while ($icnt < $tLines)

{ # LATER WILL SUPPLY A TEXT VALUE from database!!

$iv = shift(@rows); # what if run out?? | HMM. FIX THIS ???
if (! defined $iv)

{ $iv = ’’;
};

my($j);
if ($ilimit > 0)

{ $j = CreateOneItem ($myODBC, $i, $newW,
$iX, $iY, $iW, $iH,
0, $iInitial, $iResponse, ’’, # initial and final are null??? ??? ???
$iType, $iv, $iList, 1, $irEnabled, 0, $iText, ’’); #
#

if ($j)
{ $GROUPS[$i] = 0; # default is NO group ???

$VVALS[$i] = $iv; # for later query: see: ˆV 18/5/2004
&Print (" \n val1($i) = $iv"); # 18/5/2004

??????????? CLUMSY HACK!
$i ++; # bump overall item count (an index into @TKITEMS)
$iY += $iH; # move down to draw next item [??? DO THIS ANYWAY. ???]
$ilimit --;

};
};

$icnt ++; # bump count
};

$iX += $iW; #move right to next column! [COULD CHECK FOR OVERRUN???]
};

$i -= $idx;
return ($i); #return number of NEW items

}

8 ITEMS 56

8 Items

8.1 CreateOneItem

CreateOneItem is another one of those monster routines. We break it up, mainly
into small sections each of which deals with a particular item type.

8.1.1 Startup

CreateOneItem accepts a whole host of parameters, and returns 1 or 0, depending
on whether it succeeded or failed. As expected, we submit a database handle, the
current total number of items (idx), a Tk window (newW), various coordinates,
several scripts, a datum type, the item’s text, an associated list (only really used
for poplists), whether the item is enabled at startup, and a few other bits and bobs.
The iPaper value is an ugly hack, at present only used for pushbuttons. The iScript
value is used in highly experimental routines for communication between widgets
in the same menu.

sub CreateOneItem
{ my($myODBC, $idx, $newW,

$miX, $miY, $miW, $miH, $miGroup,
$iInitial, $iResponse, $iScript,

$iType, $iText, $iList, $iLines,
$enabled, $uid, $fixedtext, $iPaper);

($myODBC, $idx, $newW,
$miX, $miY, $miW, $miH, $miGroup,
$iInitial, $iResponse, $iScript,

$iType, $iText, $iList, $iLines,
$enabled, $uid, $fixedtext, $iPaper) = @_;
my ($rowparam);
$rowparam = $iText;
$INSCRIPT[$idx] = $iScript;

8.1.2 Minor initialisation

The following is largely concerned with paper and ink colours.

my ($paper, $ink, $both);
$paper = ’’;
$ink = ’’;
$both = ’’;
if ($uid > 0)

{ $both = &GetSQL ($myODBC,
"SELECT miPaper, ’,’, miInk \

FROM MENUITEMS WHERE miUid = $uid;",

8 ITEMS 57

"get item colour");
if (length $both > 0)

{ $both =˜ /(.*),(.*)/; # pull out colours
$paper = $1;
$ink = $2;

}; };
if ($BUG & 2)

{ &Print ("\n\n Type = $iType, \
Text = ’$iText’, Lines = $iLines");

&Print ("\n DEBUG: Item details (x,y,w,h) =\
($miX,$miY,$miW,$miH) group $miGroup");

&Print ("\n Initial: $iInitial");
&Print ("\n Response: $iResponse");
&Print ("\n Script: $iScript");
&Print ("\n List: $iList");

};
if ($iType == 4) #pushbutton

{ $iText = ’0’; # default to zero ?!
};

$TKVALUES[$idx] = $iText; # keep value!

In the above we obtain ink and paper values, but really should explore defaults
for these a bit better! A lot of the above is taken up by the ugly debugging (BUG)
section.

8.1.3 Create a label

We create and place a Tk label, and run the associated script.

my($r);
if ($iType == 1) # label. Poor inconstant Perl!

{ $TKITEMS[$idx] = $newW->Label();
$TKITEMS[$idx]->place(-anchor => ’nw’,

-relx => $miX,
-rely => $miY);

$r = &RunClearScript ($myODBC,
$iInitial, $newW, $idx, $iText);

$iText = pop(@CMDSTACK);
if ($r <= 0) # -1 = failed, 0 = HALT

{ $TKITEMS[$idx]->destroy; # delete
return 0; # fail

};
$TKITEMS[$idx]->configure(-text => $iText);
if ($BUG & 8)

{ &Print (
"\n ITEM: label idx $idx<$iText>($miX,$miY)");

}; }

If the script fails, we clean up the new widget and fail miserably.

8 ITEMS 58

8.1.4 Create a button

elsif ($iType == 2) # button
{ $TKITEMS[$idx] =

$newW->Button(
-command => [\&DoButton2,

$myODBC, $iResponse, $newW, $idx]
);

$TKVALUES[$idx] = $rowparam;
$TKITEMS[$idx]->place(-anchor => ’nw’,

-relx => $miX,
-rely => $miY,
-relheight => $miH,
-relwidth => $miW);

if (length $ink > 0)
{ $TKITEMS[$idx]->configure (-foreground => $ink);
};

if (length $paper > 0)
{ $TKITEMS[$idx]->configure (-background => $paper);
};

$r = &RunClearScript ($myODBC,
$iInitial, $newW, $idx, $iText);

$iText = pop(@CMDSTACK);
if ($r <= 0)

{ $TKITEMS[$idx]->destroy;
return 0;

};
$TKITEMS[$idx]->configure(-text => $iText);
if ($BUG & 8)

{ &Print (
"\n ITEM: button idx $idx<$iText>($miX,$miY)");

}; }

If the user now clicks on the button, DoButton2 will be invoked with the argu-
ments supplied. See how theidx value will also be submitted to DoButton2. The
initial iText value (now rowparam) is also retained (in TKVALUES). Here too we
run an initialisation script, and pop the resulting value off the stack as iText, using
the value to provide text on the button!

8.1.5 Create a checkbox

elsif ($iType == 3) # checkbox
{ $TKITEMS[$idx] =

$newW->Checkbutton(-text => ’’,
-command => [\&DoCheckbox3, $myODBC, $iResponse, $newW, $idx]

);
$TKITEMS[$idx]->place(-anchor => ’nw’,

8 ITEMS 59

-relx => $miX,
-rely => $miY,
-relheight => $miH,
-relwidth => $miW);

$TKITEMS[$idx]->configure (-variable => \$TKVALUES[$idx]);
if ($enabled == 0)

{ $TKITEMS[$idx]->configure (-state => ’disabled’);
};

$r = &RunClearScript ($myODBC, $iInitial, $newW, $idx, $iText);
$iText = pop(@CMDSTACK);
if ($r <= 0)

{ $TKITEMS[$idx]->destroy;
return 0;

};
if ($iText =˜ /ˆ1$/)

{ $TKITEMS[$idx]->select; # value is 1
};

if ($BUG & 8)
{ &Print ("\n ITEM: checkbox idx $idx<$iText>($miX,$miY)");

}; }

It’s important to note that, breaking with convention, a checkbox per senever
has associated text. You have to create a separate label, and place it where you
want!36

See how we associate a variable (in TKVALUES) with the checkbox! Destruc-
tion of the widget if the script fails is similar to that in preceding widget creation
code.

8.1.6 Create a pushbutton

There is no ‘intrinsic’ pushbutton in Perl, so we make our own. We also need the
facility to mutually exclude (mutex) other pushbuttons in the same group.

elsif ($iType == 4)
{ my ($red);

$red = $CONST{’RED’}; # ACTIVE colour
if (length $iPaper > 0)

{ $red = $iPaper;
};

$TKITEMS[$idx] = $newW->Button(
-text => $fixedtext, # NOT: => $iText,
-foreground => $red,
-background => $CONST{’WHITE’},
-activeforeground => $red,

36It makes some sense as you never then have to worry about how the system will jimmy things
to fit the associated text in, or whatever. A checkbox is a checkbox, a label is a label!

8 ITEMS 60

-activebackground => $CONST{’WHITE’},
-command => [\&FlipButton, $myODBC, $iResponse, $idx, $newW]

);
$TKITEMS[$idx]->place(

-anchor => ’nw’,
-relx => $miX,
-rely => $miY,
-relheight => $miH,
-relwidth => $miW);

$r = &RunClearScript ($myODBC,
$iInitial, $newW, $idx, $iText);

$iText = pop(@CMDSTACK);
if ($r <= 0)

{ $TKITEMS[$idx]->destroy;
return 0;

};
here, enable button if 1 value in $iText!!
if ($iText =˜ /ˆ1$/)

{ $TKITEMS[$idx]->configure(
-background => $red,
-foreground => $CONST{’GREY’});

$TKITEMS[$idx]->configure(
-activebackground => $red,
-activeforeground => $CONST{’GREY’});

$TKVALUES[$idx] = 1;
};

if ($BUG & 8)
{ &Print (

"\n ITEM: pushbutton index $idx<$iText>($miX,$miY)");
}; }

The default active (‘red’) colour of the pushbutton is actually specified exter-
nally as a ‘constant’ so the smart user can alter this (a frill)! We can also override
the colour value with a menu-defined one. Clicking on the button toggles it by in-
voking FlipButton. Other coding is very similar to that for the preceding widgets,
with the exception of the check for a1 value in iText, which, if it succeeds, flips
the button into an ON state.37. See how, for visual appeal and to avert confusion,
we also need to fiddle with theactivefore and backgrounds!

8.1.7 Create a text field

We create a text field, and then run an initialisation script, as for the items above.

elsif ($iType == 5) # textfield
{ $TKITEMS[$idx] = $newW->Entry();

37FlipButton shouldn’t be usedhere

8 ITEMS 61

$TKITEMS[$idx]->place(-anchor => ’nw’,
-relx => $miX,
-rely => $miY,
-relheight => $miH,
-relwidth => $miW);

$TKITEMS[$idx]->configure (
-validatecommand => [\&CheckEntry5,

$myODBC, $iResponse, $newW, $idx],
-validate => ’focusout’,
-textvariable => \$TKVALUES[$idx]);

$r = &RunClearScript ($myODBC,
$iInitial, $newW, $idx, $iText);

$iText = pop(@CMDSTACK);
if ($r <= 0)

{ $TKITEMS[$idx]->destroy;
return 0;

};
$TKVALUES[$idx] = $iText;
if ($BUG & 2)

{ &Print ("\n DEBUG: TEXT: value is <$iText>");
};

if ($BUG & 8)
{ &Print ("\n ITEM: txt idx $idx<$iText>($miX, $miY)");

}; }

Validation of the text string entered by CheckEntry5 occurs on leaving the box
(focusout). See how, as usual, we associate the text with an index into the array
TKVALUES. We still need to explore (within Tk) altering the text field’s -state
(normal or disabled), and perhaps -font, colours and so forth.

8.1.8 Create a poptrigger

The poptrigger is a bit more exacting, because the poplist must be generated by
a script if the submitted ’list’ starts with-> . Typically the script run by Run-
WholeScript will invoke SQLMANY. The following is patterned on the preceding
code.

elsif ($iType == 6) # poptrigger
{ $TKITEMS[$idx] = $newW->Optionmenu();

my(@iv);
$_ = $iList;
if (/ˆ->(.+)/) # if -> run script!

{ $_ = $1;
@CMDSTACK = ();
&RunWholeScript ($myODBC,

$_, $newW, $idx, -1);

8 ITEMS 62

@iv = @CMDSTACK;
} else
{ s/\|$//; # rid of last pipe!

@iv = split /\|/;
};

$TKITEMS[$idx]->addOptions(@iv);
$TKITEMS[$idx]->place(-anchor => ’nw’,

-relx => $miX,
-rely => $miY,
-relheight => $miH,
-relwidth => $miW);

$POPVALUE[$idx] = $iText;
$TKITEMS[$idx]->configure(

-textvariable => \$POPVALUE[$idx]);
$r = &RunClearScript ($myODBC,

$iInitial, $newW, $idx, $iText);
$iText = pop(@CMDSTACK);
if ($r <= 0)

{ $TKITEMS[$idx]->destroy;
return 0;

};
$POPVALUE[$idx] = $iText;
$TKITEMS[$idx]->configure (

-command => [\&Dopoptrigger6,
$myODBC, $iResponse, $newW, $idx]);

if ($BUG & 8)
{ &Print ("\n ITEM: poptrigger $idx <$iText> ($miX, $miY)");

}; }

8.1.9 Create a scrollbar

This section is just a stub, at present.

8.1.10 Exit

If all of the above testing failed, we warn of the failure. Finally we exit, with a
return code of 1 only if the routine succeeded.

else
{ warn "Bad item type $iType";

return 0; # fail
};

return 1; #success.
}

8 ITEMS 63

8.2 Subsidiary ‘Item’ routines

The following routines are used by CreateOneItem above, or attached as responses
to Tk items created by it.

8.2.1 RunClearScript

This routine completely clears the command stack before it runs the script pro-
vided. It accepts an ODBC connection, a script (iInitial), a Tk window (newW),
as well as an index into TKITEMS and a text string. The text string is pushed to
the stackafter the stack has been cleared, and before the script is run.

sub RunClearScript
{ my ($myODBC, $iInitial, $newW, $idx, $iText);

($myODBC, $iInitial, $newW, $idx, $iText) = @_;
@CMDSTACK = (); # clear it. clumsy.
push (@CMDSTACK, $iText);
if (length $iInitial > 1)

{ return &RunWholeScript ($myODBC,
$iInitial, $newW, $idx, -1);

};
return 1; # ’success’.

}

Smarter would be to lock access to the command stack below the current level.
We have actually already implemented such a mechanism in the PDA program, but
this code lags behind.38

8.2.2 FlipButton

Toggle a pushbutton state between 1 and 0. This routine is invoked whenever
a pushbutton is clicked upon — it is made more complex because it also has to
ensure that other pushbuttons in the same group are now turned off, if the click
turns the buttonon. Donotuse FlipButton if the other buttons in the group haven’t
yet been created or linked to one another! The routine which ensures the other
buttons turn off is called Mutex2. Only after Mutex2 do we run the associated
script (iResponse) which determines the button’s response.

The arguments for Flipbutton are minimal — the database handle, a Tk win-
dow (newW), the index of the item within TKITEMS, and the response script.

If the user clicks on a button that is alreadyon, the click doesn’t turn the button
off again, it simply does nothing!39

38Needs work, what’s new?
39This seems strange, but is a consequence of our choice of focusFollowsMouse in the Tk

options right at the start of the program.

8 ITEMS 64

sub FlipButton
{ my($myODBC, $iResponse, $i, $newW);

($myODBC, $iResponse, $i, $newW) = @_;
my($btn);
$btn = $TKITEMS[$i];
my($bclr, $fclr);
$bclr = &GreyGet($btn->cget(’-background’));
$fclr = &GreyGet($btn->cget(’-foreground’));
if ($bclr ne $CONST{’GREY’})

{ return;
};

$btn->configure(-background => $fclr,
-foreground => $CONST{’GREY’}); # on

$btn->configure(-activebackground => $fclr,
-activeforeground => $CONST{’GREY’});

$TKVALUES[$i] = 1;
&Mutex2($i);
if (length $iResponse < 1)

{ return;
};

@CMDSTACK = ();
push (@CMDSTACK, $TKVALUES[$i]); #clumsy
&RunWholeScript ($myODBC, $iResponse, $newW, $i, -1);

}

8.2.3 ClearButton

ClearButton is only called by the following routine: Mutex2. It simply clears the
relevant pushbutton, using the index into TKITEMS (i) provided.

sub ClearButton
{ my ($i);

($i) = @_;
my($fclr);
$fclr = $TKITEMS[$i]->cget(’-background’);
if ($fclr eq $CONST{’GREY’})

{ return;
}; # return if already clear.

if ($fclr eq $CONST{’WHITE’})
{ $fclr = $TKITEMS[$i]->cget(’-foreground’);
}; # if white, get ink colour!

$TKITEMS[$i]->configure (-background => $CONST{’GREY’},
-activebackground => $CONST{’GREY’},
-foreground => $fclr,
-activeforeground => $fclr
);

$TKVALUES[$i] = 0; #also clear *value*
if ($BUG & 8) { &Print ("\n CLEAR: $i"); };

8 ITEMS 65

};

See how we don’t invoke another script when we clear the button! This is
because our database should hold a record ofwhenthe former item and any current
item was set, so storing information about the ‘clearing’ is redundant and time-
consuming.

8.2.4 Mutex2

Here we go through the array GROUPS looking for items associated with the
current pushbutton (in the same group). Being obsessive, we have a ‘belt and
braces’ approach to ensure that we don’t get caught up in this routine. See how
wedon’t clear thecurrentbutton.

sub Mutex2
{ my ($i);

($i) = @_;
my ($belt, $todo);
$belt = 100;
$todo = $i;
if ($BUG & 32) { &Print ("\n Debug mutex: entry is $i; "); };
while ($belt > 0)

{ $i = $GROUPS[$i];
if ($BUG & 32) {&Print (" ->$i"); }; # debug
if ($i == $todo) # back to DOH

{ return;
};

&ClearButton ($i); # else, clear
$belt --;

};
Print ("\n ERROR: infinite loop in mutex. Index $todo");

}

8.2.5 GreyGet

As mentioned before, ‘constants’ such as RED, GREY and WHITE can be al-
tered in the filedata\constants.const . A pristine pushbutton is ‘white’,
an active one is ‘red’, and an inactivated one is ‘grey’. In the following routine we
provide a colour, and if its white, then we return grey.40 And that’s it.

sub GreyGet
{ my ($clr);

($clr) = @_;

40By default, this grey is not the same as MS Windoze institutional grey.

8 ITEMS 66

if ($clr eq $CONST{’WHITE’})
{ return ($CONST{’GREY’});
};

return ($clr);
}

8.2.6 DoButton2

We respond to a button click. Necessary arguments are the ODBC handle, a re-
sponse script, a Tk window, and the index of the clicked button.

sub DoButton2
{ my($myODBC, $iResponse, $newW, $i);

($myODBC, $iResponse, $newW, $i) = @_;
if (length $iResponse < 1)

{ return;
};

@CMDSTACK = ();
&RunWholeScript ($myODBC, $iResponse, $newW, $i, -1);

}

8.2.7 Dopoptrigger6

The poptrigger version of DoButton2.

sub Dopoptrigger6
{ my($myODBC, $iResponse, $newW, $i);

($myODBC, $iResponse, $newW, $i) = @_;
my ($fred);
$fred = $POPVALUE[$i];
if (length $iResponse < 1)

{ return; # do nothing if undefined
};

@CMDSTACK = (); # clumsy as usual.
push (@CMDSTACK, $fred);
&RunWholeScript ($myODBC, $iResponse, $newW, $i, $i); # hmm.

}

Clumsy for several reasons. In this and several other areas, we should consider
using RunClearScript!

8.2.8 DoCheckbox3

Similar to the above response routines is DoCheckbox3.

8 ITEMS 67

sub DoCheckbox3
{ my($myODBC, $iResponse, $newW, $i);

($myODBC, $iResponse, $newW, $i) = @_;
if (length $iResponse < 1)

{ return;
};

@CMDSTACK = ();
my ($valu);
$valu = $TKVALUES[$i];
push (@CMDSTACK, $valu);
&RunWholeScript ($myODBC, $iResponse, $newW, $i, -1);

}

8.2.9 CheckEntry5

sub CheckEntry5
{ my ($myODBC, $iResponse, $newW, $i);

($myODBC, $iResponse, $newW, $i) =@_;
if (length $iResponse < 1)

{ return; # do nothing
};

my($newval);
$newval = $TKVALUES[$i];
if (length $newval < 1)

{return;
};

$newval =˜ s/’/’’/g; # [4]
$newval =˜ s/\|/\?/g; # [5]
@CMDSTACK = ();
push (@CMDSTACK, $newval);
&RunWholeScript ($myODBC, $iResponse, $newW, $i, -1);
return 1;

}

We won’t use other Perl/tk values available. There’s a problem in the above
with clearing of a string [look at this]! The duplication of single quotes[4] and
removal of pipes[5] limits the damage which might be done when arbitrary text
strings and SQL interact. A return value of 1 signals success.

9 SCRIPTING 68

9 Scripting

Our scripting language is at present very primitive. We anticipate in the future
being able to view scripts in a variety of ways, permitting macro-like abstraction,
but without the limitations of macros in eg C++.41

Scripts are linear, each scriptcommandbeing separated from the next by the
character sequence-> , this representing an arrow, or if you wish, flow of control
from left to right.

Many commands take things off thestack, or push values back onto the stack.
We have a few slightly odd but satisfying conventions:

• Commands which take two items off the stack usually ‘apply’ the topmost
argument to the next one down. For example, if we say100->2->DIV ,
this reads as “Put 100 on the stack, then two, and then divide 100 by two,
placing the result back on the stack”.42

• When we substitute values, moving them into a text string from the stack,
the order we read them is the order of substitution. For example

"Flopsy"->"Mopsy"->"Cottontail"->"We ate $[], $[] and $[]"

becomes:"We ate Flopsy, Mopsy and Cottontail"

9.1 Complete script execution

In this section we discuss first RunWholeScript (which does just that, given a
string containing the script), and the minor routine InterList which clumsily turns
an array into a delimited string.43

9.1.1 RunWholeScript

This routine accepts the usual database and Tk window, as well as the script (iS-
crpt), the index of the widget responsible in TKVALUES, and the nasty little
variablepop . This clumsy hack is used by DoCommand below for resetting the
displayed value of a poplist.

41My idea is that it should be easy to toggle between a macro-like overview, and a full-text
script.

42We end up with something resembling reverse Polish notation, that powerful but to most
people rather confusing notation found on HP calculators. We envisage the future ability to view
such scripts in ‘infix-translated’ form.

43There must be a better way in Perl.

9 SCRIPTING 69

sub RunWholeScript
{ my($myODBC, $iScrpt, $newW, $idx, $pop);

($myODBC, $iScrpt, $newW, $idx, $pop) = @_;
&Print("\n Running script{<$iScrpt>}"); # debug
if (($iScrpt =˜ /-> *now/i)

||($iScrpt =˜ /now *->/i)
)
{ $TODAY = &GetLocalTime();
};

Another inept hack is that at the start of the script we identify the existence
of a reference to the command NOW.44 If this is the case, we update the variable
TODAY, which is really a timestamp. In any one script, NOW always has the
same time — that of the start of the script!

9.1.2 Pull out commands

We split the script up into component commands, and execute these one after
another. We’ll regard each component command as a ‘line’.

my (@lines);
$_ = $iScrpt;
@lines = split /->/;
my($l, $skip, $mark);
$mark = -1; # none
$skip = 1; # normal
foreach $l (@lines)

{ if ($skip == 2)
{ $skip = 1; # skip line

next;
};

$skip = &DoCommand($myODBC, $newW, $l, $idx, $pop);

Here we introduce the skip and mark variables, used later. The normal value
for skip is 1, and for mark, -1. Ifskip takes on a value of 2, then the subsequent
command is, well, skipped. You can see thatskip corresponds to the simple
SKIP command! Each invocation of DoCommand results in an update to the
value inskip .

9.1.3 Other skip values: MARK

There are other signals which can be sent inskip . Here are some negative ones,
and appropriate responses:

44We permit leading and trailing spaces, which is perhaps silly.

9 SCRIPTING 70

if ($skip <= 0)
{ if ($skip < -10) # marked!

{ $skip += 100;
$mark = $#CMDSTACK - ($skip);
if ($BUG & 16)

{ &Print ("\n DEBUG: marked position is $mark");
};

$skip = 1;
} # TO BE CONTINUED..

We indulge in some sneakiness here. If the value inskip is under -10, then
we use this value (after modification) tomark the stack. This functionality corre-
sponds to the MARK command. The value inmark changes from its normal -1
value to a positive value which indexes CMDSTACK, the stack.

To understand what we are doing here, we need to understand the MARK
command. MARK accepts a positive number (call it N)and then codes this by
subtracting 100, returning that value. We recover N by adding 100. We mark the
stack N deep bysubtractingN from the top of CMDSTACK.

9.1.4 skip -3: LIST

We have a LIST command which turns the rest of the stack (above the current
mark) into a string. A value of -3 inskip forces this action:

elsif ($skip == -3) # LIST
{ my (@lst);

if ($mark == -1) # if unmarked
{ @lst = @CMDSTACK[0..$#CMDSTACK];
} else
{ @lst = @CMDSTACK[$mark..$#CMDSTACK];
};

$#CMDSTACK = $mark; # trim stack
my($sep) = pop(@lst); # separator
$sep = &InterList($sep, @lst);
push(@CMDSTACK, $sep);

$skip = 1; #continue
}

The separator used by the InterList routine to delimit the items in the newly-
created string is obtained from the top of the stack.

9.1.5 skip -4: URZN

This odd but useful command (‘Unmark and return if zero or null’) is invaluable
in testing a value and then returning appropriately.45

45It was formerly URNZ but NZ is the common abbreviation for ’nonzero’.

9 SCRIPTING 71

elsif ($skip == -4) # [1-4-2005]
{ $#CMDSTACK = $mark; # trim

$mark = -1; # ?
$skip = 3; # force return below

}

As with many commands involving marks, this needs some work (The PDA
program implements a hierarchy of marks, but the Perl one must still catch up).
The trimming of the stack is because URNZ returns, not because it unmarks!
[EXPLORE THIS, CF C++ PROGRAM]. You must also read the URZN section
below (Section9.5.13).

9.1.6 Other negative skip values

A value of -2 inskip turns off marking, and the important value -1 signals failure
of a script. Such failure is deliberately induced by using the FAIL command!

elsif ($skip == -2) # unmark
{ $mark = -1;

$skip = 1; #continue
}

else # -1 signals FAIL
{ last;
};

}; # END of -ve skip values..

The value(s) on the stack are irrelevant if we FAIL, as the stack isn’t used
subsequently! The Perllast command breaks us out of the current loop. Note
that UNMARK doesnot haul stuff off the stack above the current mark, this can
only be done using RETURN or URNZ. [EXPLORE THIS, CF PDA C++ PRO-
GRAM].

9.1.7 Returning

Other, positive,skip values transmit yet other signals. The value 3 forces a
RETURN (with relevant stack trim if marked [EXPLORE THIS?? FIX ME]).
The return value from RunWholeScript has significance: -1 signals failure, 1 is
‘normal’, 0 is terminated (STOP).

if ($skip == 3) # RETURN
{ $skip =1; # after RETURN we continue!

if ($mark != -1) # NOOOOOO! [fix me]
{ $#CMDSTACK = $mark;
};

9 SCRIPTING 72

last;
};

}; # end of inner foreach $l
return $skip;
}

9.1.8 InterList

[This routine needs to be checked]. As mentioned above (Section9.1.4), InterList
takes an array and turns this into a text string, with the submitted delimiter sepa-
rating each item in that final string. The final character of the string is always the
separator!

sub InterList
{ my ($sep, @lst);

($sep, @lst) = @_;
my($rslt);
$rslt="";
my($i);
foreach $i (@lst)

{$rslt = "$rsltisep";
};

return ($rslt);
}

9.2 Command execution

Each script command is represented here. The command list is fairly well bedded-
down, but there are still some minor differences between the PDA C++ program
and the Perl. These problems must be addressed!

9.2.1 DoCommand

DoCommand isthecentral routine. It’s basically just an enormous Perl if . . . elsif
. . . statement, which is the exact opposite of elegant. There is undoubtedly enor-
mous scope for optimising this little monster, for example using an associative
array in some sneaky fashion.

DoCommand accepts a database handle, Tk window (newW), and three addi-
tional items — the command itself ($l), the index of the widget associated with
the command, and a nasty little value (pop), mentioned above in section9.1.1,
used solely in altering the appearance of poplists. The value ofpop is an index
into the array POPVALUE, used by commands such as REFRESH.

9 SCRIPTING 73

sub DoCommand
{ my ($myODBC, $newW, $l, $idx, $pop);

($myODBC, $newW, $l, $idx, $pop) = @_;
XPrint ("\n stack: <@CMDSTACK>"); # debugging
my ($i, $s);
XPrint (": line: <$l>"); # debug
$l =˜ / *(.+) */; # clip
$_ = $1;

After a couple of debugging statements (for XPrint see section9.15far below),
we clip leading and trailing spaces off the command.

9.2.2 Insert stack pops

while (/(.*)\$\[\](.*)/) # while $[] are present
{ $s = pop(@CMDSTACK);

$_ = "$1s2";
};

In the above we sequentially pop the stack until there are no more$[] char-
acter sequences within the command string. This allows us to insert stack items
flexibly into strings.46 We insert stack values starting on theright!47

9.2.3 Parenthetic argument

if (/ˆ(\&*\w+) *\((.*)\)$/)
{ push (@CMDSTACK, $2);

$_ = $1;
};

We will commonly specify arguments after an &routine thus:

&Fred(argument here)

Note that the argument in parenthesis isas if it’s in “quotes” — so we simply
push it to the stack. The routine name is made up of any character that’s not
‘whitespace’, i.e. Perl regex\w : this includes a. . . Z, a. . . Z, 0. . . 9, and underscore.

46Explore the potential side effects of odd stack pops within commands themselves, rather than
strings, as well as the potential problems where the inserted string contains this $[] sequence! Such
quirks would currentlynot work on the PDA, anyway, so we should probably eliminate them.

47We must also consider what to do if stack pop fails because the stack is empty — FIX ME!

9 SCRIPTING 74

9.2.4 Invoke a routine

This section is cumbersome and might be amalgamated with the preceding one.
Look for a routine name, and invoke it if present.

if (/\&(\w+)$/)
{ return &Invoke($myODBC, $newW, $1, $idx, ’’, $pop);
};

Invoke can return success, failure, or even SKIP!48

9.2.5 Implement REPEAT

if (/ˆrepeat$/i) # repeat fx:
{ $_ = pop(@CMDSTACK);

if (! /\&(.+)/)
{ &Print ("\n Error: Bad repeat<$_>");

return -1; # fail
};

$l = $1; # ugly
$i = 1;
while ($i > 0)

{ $i = &Invoke($myODBC, $newW, $l, $idx, ’’, $pop)
};

if ($i > -1)
{ return 1; # 0=STOP terminates.
};

return -1; # FAIL
};

At present REPEAT must be handed a &routine name. It repetitively invokes
that routine, until a STOP statement has been processed (Invoke returns zero).49

9.2.6 A quoted item

An item in double quotes is treated as a string and placed on the stack.

if (/ˆ\"(.*)\"$/)
{ push (@CMDSTACK, $1);

return 1; # ok
};

48Check that the PDA version implements the last-named.
49An idea would be to also have an internally defined limiting count, or a timeout!

9 SCRIPTING 75

9.3 SQL commands

There is a defect in our current SQL function QUERY, in Perl (but not on the
PDA). [FIX ME: look at GetSQL] QUERY should retrieve a singlerow, and not
just a single item, as it currently does.

9.3.1 QUERY

if ((/ˆSQL$/) || (/ˆQUERY$/i))
{ $i = pop(@CMDSTACK); # get sql

$i = &GetSQL($myODBC, $i, "get one SQL [row] HMM?");
if (length $i < 1)

{ $SQLOK = 0;
};

if ($SQLOK)
{ push (@CMDSTACK, $i);
};

return 1;
}

The equivalent SQL command is a legacy which must be removed. As usual,
SQLOK is used to signal the success/failure of the SQL statement.

9.3.2 DOSQL

Here we execute an SQL statement, and put nothing back on the stack.

elsif (/ˆDOSQL$/i)
{ $i = pop(@CMDSTACK); # get instruction

$i = &DoSQL($myODBC, $i, "perform SQL statement");
return 1;

}

Note that if we accidentally replace DOSQL with QUERY, then Perl will crash
horribly in trying to retrieve a non-existent value.

9.3.3 SQLMANY

Here we retrieve multiple rows from SQL.

elsif (/ˆSQLMANY$/i)
{ $i = pop(@CMDSTACK); # get query

my (@mny);
@mny = &SQLmanySQL ($myODBC, $i, "get SQL array");

@CMDSTACK = (@CMDSTACK, @mny); # append
return 1;

}

9 SCRIPTING 76

9.3.4 KEY

Generate an auto-incrementing key, and push it to the stack. The variablekyn
which is popped off the stack is used to refer to a column in the SQL table called
UIDS. Consult the AutoKey function (Section5.1.6) for details.

elsif ((/ˆauto$/i) || (/ˆKEY$/i))
{ my($kyn);

$kyn = pop(@CMDSTACK);
$i = &AutoKey($myODBC, $kyn);
push (@CMDSTACK, $i);

}

An obsolete synonym for KEY is the AUTO command (don’t use it)!

9.3.5 OKSQL

OKSQL pushes a 1 to the stack if themost recentSQL statement succeeded,
otherwise zero.

elsif (/ˆOKSQL$/i)
{ push(@CMDSTACK, $SQLOK);
}

9.3.6 COMMIT

See section5.1.5.

elsif (/ˆCOMMIT$/i)
{ &Commit($myODBC);
}

9.3.7 ROLLBACK

As for COMMIT, see section5.1.5.

elsif (/ˆROLLBACK$/i) #
{ &Rollback($myODBC);
}

9.3.8 ME

Strictly speaking this command has little to do with SQL, but as we almost always
use it in an SQL context, we include it here. It pushes the unique ID of the current
user to the stack:

elsif (/ˆme$/i)
{ push (@CMDSTACK, $CURRENTUSER);
}

9 SCRIPTING 77

9.4 Arithmetic and Logical commands

In many ways, the arithmetic and logical commands in the Perl program areless
advanced than their interpretation in the PDA program. We need to work on this.
The main reason for this deficiency is that we only really conceived of having data
types identical to the SQL ones when we started on the PDA version! In addition,
there’s the seductive typing of Perl, which is ultimately rather evil.

9.4.1 ISNULL

Check for a NULL (zero length string) on the stack, by popping the stack. Return
1 if present, 0 otherwise. This topmost item on the stack vanishes, of course, to
be replaced by the answer.

elsif (/ˆisnull$/i)
{ $i = pop(@CMDSTACK);

if (length $i < 1)
{ $i = "1";
} else
{ $i = "0";
};

push (@CMDSTACK, $i);
}

9.4.2 NEG

Negate a number on the stack.

elsif (/ˆneg$/i)
{ $i = pop(@CMDSTACK);

push (@CMDSTACK, -($i));
}

9.4.3 NOT

If anything other than 0 on the stack, return 0. If zero, return 1.50

elsif (/ˆnot$/i)
{ $i = pop(@CMDSTACK);

if ($i =˜/ˆ *0+ *$/)
{ push (@CMDSTACK, 1);
} else
{ push (@CMDSTACK, 0);
};

}

50But what about F, NULL and perhaps even “FALSE”? Look into this, and make it compatible
with the PDA representation!

9 SCRIPTING 78

9.4.4 ADD

Add two numbers, replacing them on the stack with the result.

elsif (/ˆadd$/i)
{ $i = pop(@CMDSTACK);

$i += pop(@CMDSTACK);
push (@CMDSTACK, $i);

}

9.4.5 SUB

Similar to ADD. Note that the topmost stack item (number) is subtracted from the
one below, and the result is placed on the stack.

elsif (/ˆsub$/i)
{ $_ = pop(@CMDSTACK);

$i = pop(@CMDSTACK);
$i -= $_;
push (@CMDSTACK, $i);

}

9.4.6 DIV

Similar to SUB. Divide deeper number by topmost (more superficial) one.51

elsif (/ˆdiv$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
$_ /= $i;
push (@CMDSTACK, $_);

}

9.4.7 MOD

Modulus (remainder) of two numbers. Similar to DIV but we keep the remainder
and throw away the quotient. In Perl %= gives the modulus.

elsif (/ˆmod$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
$_ %= $i;
push (@CMDSTACK, $_);

}

51We need to look carefully into typing, integer versus float, and IEEE 754r. Aagh!

9 SCRIPTING 79

9.4.8 MUL

Product of two numbers. As for the others above we need to look into more careful
typing!

elsif (/ˆmul$/i)
{ $i = pop(@CMDSTACK);

$i *= pop(@CMDSTACK);
push (@CMDSTACK, $i);

}

9.4.9 SAME

Check foridentical items on the stack.52 Of limited, well actually, no utility with
floating point numbers.

elsif (/ˆsame$/i) # if two strings are identical
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
if ($i eq $_)

{ push (@CMDSTACK, ’1’);
} else
{ push (@CMDSTACK, ’0’);

}; }

The routine could be made far less cumbersome.

9.4.10 GREATER

As with SUB and other binary (dyadic) commands, check whether the deeper
number is larger than the number more superficially placed on the stack.

elsif (/ˆgreater$/i)
{ $_ = pop(@CMDSTACK);

$i = pop(@CMDSTACK);
if ($i > $_)

{ push (@CMDSTACK, ’1’);
} else
{ push (@CMDSTACK, ’0’);

}; }

The code is clumsy.

52We will need to be careful here. What about, for example, NULL.

9 SCRIPTING 80

9.4.11 LESS

As for GREATER above.

elsif (/ˆless$/i)
{ $_ = pop(@CMDSTACK);

$i = pop(@CMDSTACK);
if ($i < $_)

{ push (@CMDSTACK, ’1’);
} else
{ push (@CMDSTACK, ’0’);

}; }

9.4.12 AND

If two ones on the stack, return 1, otherwise 0. Typical Boolean logic.53

elsif (/ˆand$/i)
{ $_ = pop(@CMDSTACK);

$i = pop(@CMDSTACK);
if (($i == 1) && ($_ == 1))

{ push (@CMDSTACK, ’1’);
} else
{ push (@CMDSTACK, ’0’);
};

}

9.4.13 OR

Similar Boolean logic to AND. Return 1 if either value is one.54

elsif (/ˆor$/i) # logic: either must be 1
{ $_ = pop(@CMDSTACK); #

$i = pop(@CMDSTACK); #
if (($i == 1) || ($_ == 1))

{ push (@CMDSTACK, ’1’);
} else
{ push (@CMDSTACK, ’0’);

}; }

We should probably also define an XOR command.

53Agonise over other possible values and interpretations. What about NULL?
54No? Perhaps better to return 1 unless both are zero??

9 SCRIPTING 81

9.4.14 ISNUMBER

One of the liabilities of lacking strong typing is the lengths we have to go to for
simple questions like “Is it a number?”. Our C++ PDA program has less trouble!

elsif (/ˆisnumber$/i)
{ $_ = pop(@CMDSTACK);

if (/ˆ-?\d+$/) # if integer
{ push (@CMDSTACK, 1);
} else
{ push (@CMDSTACK, 0);

}; }

Should the regex allow other leading or trailing characters? Surely not — we
thus amended the code on 31/7/2005.

9.4.15 INTEGER

Convert a number (force, coerce it!) into an integer.55

elsif (/ˆinteger$/i)
{ $i = int pop(@CMDSTACK);

push (@CMDSTACK, $i);
}

9.4.16 BOOLEAN

A general purpose function to coerce anything into 0 or 1. Makes a lot of our
agonising above less important, as we can BOOLEAN almost anything and then
use it with logical commands.

Null, zero, ‘false’ or ‘F’ all become zero, regardless of case; others default to
one.

elsif (/ˆboolean$/i)
{ $i = pop(@CMDSTACK);

if (($i =˜ /ˆ[0|f|false]$/i)
|| (length $i == 0)

) # ugly test
{ $i = ’0’;
} else
{ $i = ’1’;
};

push (@CMDSTACK, $i);
}

55Look carefully at what we are actually doing, especially as AFAIK Perl has different options
for how int actually works!? Make this consistent with PDA!

9 SCRIPTING 82

9.4.17 NULL

NULL shouldn’t be confused with ISNULL. NULL puts a null value onto the
stack, while ISNULL tests for one!

elsif (/ˆNULL$/i)
{ push (@CMDSTACK, "");
}

9.5 Flow of control and stack commands

9.5.1 RETURN

The magic value of 3 is discussed in Section9.1.7above.

elsif (/ˆreturn$/i)
{ return (3); # force return
}

9.5.2 STOP

STOP forces termination (without prejudice) in a variety of settings.56 Particularly
useful with REPEAT (See section9.2.5).

elsif (/ˆstop$/i)
{ return 0;
}

9.5.3 FAIL

The failure value of -1 causes havoc and destruction (well, script termination any-
way) when returned:

elsif (/ˆfail$/i) # abort!
{ return -1;
}

9.5.4 SKIP

As discussed above (Section9.1.2), a return value of 2 forces skipping of the
following command. If the command is in the form ‘&Fred(datum)’, then the
whole schmeer is skipped, not just poor &Fred. SKIP only skips if there is a ‘1’
on the stack.

56Check this, make sure it’s identical in Perl and on PDA.

9 SCRIPTING 83

elsif (/ˆskip$/i)
{ $i = pop(@CMDSTACK);

if ($i !˜/ˆ1$/)
{ return 1; # do NOT skip if zero
};

return 2; # force skip
}

9.5.5 COPY

Make an exact copy of the top of the stack.57

elsif (/ˆcopy$/i)
{ $i = pop(@CMDSTACK);

push (@CMDSTACK, $i);
push (@CMDSTACK, $i);

}

9.5.6 DISCARD

Discard the top item on the stack!

elsif (/ˆdiscard$/i)
{ $i = pop(@CMDSTACK);
}

9.5.7 LIST

This command turns the whole stack (above the current mark) into a string! So if
we say:

"A"->"B"->"C"->LIST(,)

Then we will obtain:"A,B,C"
For details of how this works, see above (Section9.1.4).

elsif (/ˆlist$/i)
{ return -3;
}

57As usual, explore what happens if there is nothing on the stack??

9 SCRIPTING 84

9.5.8 SWOP

A singularly useful little command! All it does is interchange the top two items
on the stack.

elsif (/ˆswop$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
push (@CMDSTACK, $i);
push (@CMDSTACK, $_);

}

9.5.9 BURY

Note that the implementation of BURY (and DIGUP) in Perl is convenient (using
unshift and shift) but has the drawback that if we unshift enough things, they
appear on the stack top again. We must re-implement these functions using the
method we employ on the PDA, which is more secure.

Peculiar little commands, but most useful.

elsif (/ˆbury$/i)
{ $i = pop(@CMDSTACK);

unshift(@CMDSTACK, $i); # good ole Perl.
}

9.5.10 DIGUP

See the note under BURY above (Section9.5.9).

elsif (/ˆdigup$/i)
{ $i = shift(@CMDSTACK);

push(@CMDSTACK, $i);
}

9.5.11 MARK

The MARK and UNMARK commands are far more primitive (at present) than the
PDA implementation. We need to address this problem. At present here, we only
have one mark here, rather than having multiple levels of marking, a significant
limitation. We’ve briefly discussed MARK above (Section9.1.3). We need to do
a lot of work to ‘synchronise’ these functions with those on the PDA.

elsif (/ˆmark/i)
{ $i = pop(@CMDSTACK); # mark index

if ($BUG & 16)

9 SCRIPTING 85

{ &Print ("\n DEBUG: mark index is $i");
};

if (($i > 16) || ($i < -16))
{ &Print ("\n ERROR: Bad mark param: $i");

return -1;
};

if ($i < 0) { $i = -$i; }; # [6]
return (-100 + $i);

}

The flag[6] illustrates that values submitted to MARK are alwayspositive
— they say how many items we intend to clip off the current stack.58 Do NOT
submit negative values to MARK, despite the fact that it will accept them!

9.5.12 UNMARK

Wemustmake MARK and particularly UNMARK identical in function to the cor-
responding commands on the PDA. This injunction particularly pertains to what
happens to marked items when we unmark (as opposed to RETURNing), as well
as multiple levels of marking (only present on the PDA, for now)!

elsif (/ˆunmark/i)
{ return -2;
}

Also look at Section9.1.3.

9.5.13 URZN

As noted above (Section9.1.5), we here unmark and returnonly if there is a
zeroor null value on the stack! An odd but extremely useful command. Note in
particular that the item tested on the stack isrestoredif URZN fails!!

elsif ((/ˆurnz/i)
||(/ˆurzn/i)

)
{ $i = pop(@CMDSTACK);

if (((length $i) < 1) || ($i == 0))
{ return -4; # signal urzn
};

push(@CMDSTACK, $i); # restore!
}

58Previously we had only negative values, but for several reasons, mainly PDA ones, we
changed the convention.

9 SCRIPTING 86

There is a problem in that we should probably still succeed if the stack is just
plain empty!59

9.5.14 RUN

This powerful command takes a string off the stack and runs it as a script.60

elsif (/ˆrun/i)
{ $i = pop(@CMDSTACK);

return &Invoke($myODBC, $newW, $i, $idx, ’’, $pop);
}

The return value depends on the success or failure of Invoke (Section9.15.2).

9.6 Single letter commands and their friends

9.6.1 X

The subject of a menu, X, is retrieved. Recall that X is passed by default as the
subject of the next menu, and that a stack exists to preserve the current X value
when a new menu is loaded.61

elsif (/ˆX$/)
{ push (@CMDSTACK, $XPARAM);
}

Also have a look at SetX.

9.6.2 V

V refers to the value associated with a particular row (in a polymorphic table), or
a particular element in a monomorphic table. A special VVALS array stores this
value.62

elsif (/ˆV$/)
{ if ($idx < 0)

{ &Alert($newW,
"Woops! failed to get local [V]ariable");

return -1;
};

$i = $VVALS[$idx];
push (@CMDSTACK, $i);

}

59CHECK this vs the PDA?
60Check out the potential for abuse!
61Fine print: in the past we rendered this $[X], which is really cumbersome.
62We need to look in some detail at error handling here! The current Alert is rather clumsy.

9 SCRIPTING 87

9.6.3 SETX

This command doesnot immediately set a new value for X. It places a new value
in NEWXPARAM, and then, when we move to the next menu,that new value
becomes the new X for that menu. For more immediate and brutal coercion of X,
see FORCEX (but be careful).

elsif (/ˆsetX$/i)
{ $i = pop(@CMDSTACK);

$NEWXPARAM = $i;
}

9.7 General purpose/text commands

9.7.1 IN

Check for a string within a string. The usual rule applies (as for GREATER and
so forth) — we check for the topmost string within the deeper string, returning 1
or 0.

elsif (/ˆin$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
if (/$i/)

{ push (@CMDSTACK, "1");
} else
{ push (@CMDSTACK, "0");

}; }

The above isunsafeas regex is involved, so we need to look for backticks and
so on [FIX ME]! The code is also clumsy.

9.7.2 SPLIT

We split a string into several strings, using a ‘string to split on’ obtained from the
top of the stack.

elsif (/ˆsplit$/i)
{ my(@spl);

$i = pop(@CMDSTACK); # to split on
$_ = pop(@CMDSTACK); # string to split
@spl = split /$i/;
push (@CMDSTACK, @spl);

}

I love Perl in such circumstances. We need to look at/$i/ in terms of hacks.

9 SCRIPTING 88

9.7.3 LENGTH

Determine the length of a string.63

elsif (/ˆlength$/i)
{ $i = pop(@CMDSTACK);

$i = length $i;
push (@CMDSTACK, $i);

}

9.7.4 UPPERCASE

This command and the next one should probably be replaced by a more generic
text-alteration command based on regex.

elsif (/ˆuppercase$/i)
{ $i = pop(@CMDSTACK);

$i =˜tr/a-z/A-Z/; # good ole Perl!
push (@CMDSTACK, $i);

}

9.7.5 LOWERCASE

Similar to UPPERCASE.

elsif (/ˆlowercase$/i)
{ $i = pop(@CMDSTACK);

$i =˜tr/A-Z/a-z/;
push (@CMDSTACK, $i);

}

9.8 Date and time

This section needs reworking in the light of our PDA functions, which are some-
what more mature!

9.8.1 NOW

A simple timestamp — now! Well, not entirely simple, if you examine Section
9.1.1. The timestamp in TODAY remains fixed for the duration of the executing
script!64

elsif (/ˆnow$/i)
{ push (@CMDSTACK, $TODAY);
}

63Explore the implications of other ‘data types’ in the PDA environment?!
64Explore the wisdom of this choice!

9 SCRIPTING 89

9.9 Menu-related commands

9.9.1 ALERT

Consult the Alert routine (Section4.2.1) for details.

elsif ((/ˆSAY$/i) || (/ˆALERT$/i))
{ $i = pop(@CMDSTACK);

&Alert ($newW, $i);
}

SAY is an older, deprecated variant.

9.9.2 ASK

See the relevant routine in section4.2.5.

elsif (/ˆASK$/i)
{ $i = pop(@CMDSTACK); # default text

$_ = pop(@CMDSTACK); # dialog title
$i = &Ask ($newW, $_, $i);
push(@CMDSTACK, $i);

}

9.9.3 CONFIRM

This command is discussed under section4.2.4.

elsif (/ˆCONFIRM$/i)
{ $i = pop(@CMDSTACK);

$i = &Confirm ($newW, $i); # returns 0 or 1
push(@CMDSTACK, $i);

}

9.9.4 QUIT

This somewhat dangerous routine terminates everything. Consider having confir-
mation, as we do on the PDA.

elsif (/ˆQUIT$/i)
{ exit; # DANGER: terminate Perl!
}

9 SCRIPTING 90

9.9.5 MENU

Given a menu name, we go to that menu; given a number, we move back that
number of menus, discarding the current menu and intervening ones too! Menu
handling is extensively discussed in section6.

elsif (/ˆMENU$/i)
{ $i = pop(@CMDSTACK); # menu name/No.

&GoMenu ($myODBC, $i, $newW);
return -1; # force "fail" (MUST do d/t recursion!)

}

9.9.6 ENABLED

We use this simple command with its single stack argument of either 1 or zero65

to enable or disable a widget. The widget is indexed into TKITEMS usingidx .

elsif (/ˆenabled$/i)
{ $i = pop(@CMDSTACK);

if (/ˆ1$/) # if one..
{ $TKITEMS[$idx]->configure (-state => ’enabled’);
} else
{ $TKITEMS[$idx]->configure (-state => ’disabled’);
};

}

9.9.7 POPMENU

This is an interesting command — it clips out theprecedingmenu from the menu
stack. the current menu ispreserved. In addition, the menu and X value we
popped are placed on the stack!! Occasionally useful.

elsif (/ˆPOPMENU$/i)
{ my($jom,$jox);

$jom = pop(@MENUS);
$jox = pop(@X); # preserve me!
$i = pop (@MENUS);
$_ = pop (@X);
push(@MENUS,$jom);
push(@X,$jox);
push (@CMDSTACK, $_); # push X
push (@CMDSTACK, $i); # push menu name!

}

We don’t, but probably should, check that there is a preceding menu to clip
out!

65Actually at present, 1 or something else. We should probably check for a zero! FIX and check
vs PDA!

9 SCRIPTING 91

9.9.8 PUSHMENU

Even more odd (and ugly) than POPMENU is PUSHMENU. It can occasionally
be useful, taking a menu name off the very top of the stack, followed by a value
for X, and then storing these below the current menu so that we eventually return
to the PUSHed menu with its X (subject) value.

elsif (/ˆPUSHMENU$/i)
{ my($jum,$jux);

$jum = pop(@MENUS);
$jux = pop(@X); # keep current
$i = pop(@CMDSTACK); # menu name
$_ = pop(@CMDSTACK); # X
push(@X, $_); # push these
push(@MENUS, $i); #
push(@X, $jux);
push(@MENUS, $jum); # restore current

}

9.10 Local variables

To make our scripting powerful, we need to be able to create local variables. This
cumbersome necessity is implemented in the next few sections. We refer to a local
variable fred as:

$[fred]

This is all very well for accessing the value, but how do we make a local
variable, test for the existence of a name, and set the value? Let’s explore . . .

9.10.1 NAME

We make a name using NAME.

elsif (/ˆname$/i)
{ $i = pop(@CMDSTACK);

&CreateLocalName ($i);
}

9.10.2 ISNAME

Here, we test whether a name exists:

elsif (/ˆisname$/i)
{ $i = pop(@CMDSTACK);

9 SCRIPTING 92

$i = &IsLocal($i); # get 1/0
push(@CMDSTACK,$i);

}

9.10.3 $[name]

We devote a whole section below (9.16) to functions such as FetchLocal, which
deal with local variables.

elsif (/ˆ\$\[(.+)\]$/)
{ $i = &FetchLocal($1);

push(@CMDSTACK, $i);
}

9.10.4 SET

SET sets the value of a local variable. See the discussion of$[name] above, and
section9.16.5.

elsif (/ˆset$/i)
{ $i = pop(@CMDSTACK); # get name

$_ = pop(@CMDSTACK); # and value
&SetLocal($i, $_);

}

The above should work as normal whether we say set(fred) orfred->set .
Deeper is the actual value to set ‘fred’ to!

9.11 Graphical

All of the following routines still need to be effectively implemented on the PDA.
They are frilly. Later we must include bitmap handling here too!

9.11.1 PAPER

Set the paper colour (background).

elsif (/ˆpaper/i)
{ $i = pop(@CMDSTACK);

$TKITEMS[$idx]->configure(-background => $i);
}

9 SCRIPTING 93

9.11.2 INK

Set the ink colour (foreground).

elsif (/ˆink/i)
{ $i = pop(@CMDSTACK);

$TKITEMS[$idx]->configure(-foreground => $i);
}

9.11.3 LABEL

[The following needs fixing]

elsif (/ˆlabel/i)
{

$i = pop(@CMDSTACK);
$_ = $TKITEMS[$idx]->PathName;
/.+\.(\D+)\d*/;
$_ = $1;

1: label
if (/ˆlabel$/i)

{
$TKITEMS[$idx]->configure(-text => $i);

}

2: button (and 4?!)
if (/ˆbutton$/i)

{
$TKITEMS[$idx]->configure(-text => $i);

}

3: checkbutton
if (/ˆcheckbutton$/i)

{
not: $TKITEMS[$idx]->configure(-text => $i);
(we don’t allow this sort of attached label)
? provide WARNING message! (silly)

}

5: entry
if (/ˆentry$/i)

{ # likewise, has no label
}

6: optionmenu
if (/ˆoptionmenu$/i)

{

9 SCRIPTING 94

print ("\n pop value ($idx) is now $i");
$POPVALUE[$idx] = $i; # ugly??

}

7:
if (/ˆbutton$/)
{
}

}
still need to do:
xco, yco
width, height
enabled, hidden
images (pictures)
(sound?)
...
border? style? font? text?

9.12 Communication (experimental)

The following commands are highly tentative. Avoid them!
It would be easy to simply force a property or action upon say a button (for

example make the button turn green, in order to signal to the user some sort of
alert – or ’it is ok to press me’). To decrease the tightness of coupling between
widgets, we might use a more friendly system, as follows:

1. A widget script ’declares’ itself with a name (let’s call it ’fred’), usually at
initialisation, but this can be at any time;

2. A second script (call her ’jane’, but she can be nameless) passes a message
to fred. The message is stored in an ’inbox’ (or ’blackboard’) data area that
belongs to fred.

3. Fred is made aware of the incoming datum, by invocation of an ’inbox’
script. (In our case, what the inbox script usually does is simplyrun the
message in the inbox).The inbox script is contained in an item’s database
definition as a varchar field. The inbox sees its single argument as a string
on the stack.

As things stand, this looks very complex for little gain. In the longer term, we
believe this approach is sound.

To get the above to work, we require:

1. a register of names (like ’fred’). Each name is associated with its declaring
widget by an index into TKITEMS, and the inbox script, so that the inbox
script can see its own widget and act upon it.

9 SCRIPTING 95

2. In addition, the name is associated with a blackboard data area.

3. the SEND command looks up the name, finds the associated blackboard,
writes to it, and then invokes the inbox script.

We populate INSCRIPT with the relevant script WHEN WE CREATE THE
WIDGET, but entries in the associative array IAM are dynamic. Note that in our
current implementation, a BLACKBOARD array is NOT necessary, as we directly
(ugly!) pass the parameter on the stack.

There’s an issue with table items, as they are ’clones’. The solution is to
use the V value for the table item to create itsname; using this convention, an
item on the same row KNOWS your name and can talk to you! (But what about
communication between rows?)

NB, We could use the ’option’ database in perl to achieve a lot of the above.
for now, KISS.

9.12.1 IAM

elsif (/ˆiam/i)
{ $i = pop(@CMDSTACK);

if (exists $IAM{$i}) # not ’defined’ but ’exists’ !!
{ Print ("\n ERROR: ’$i’ widget iam exists \

[value " . $IAM{$i} . "], cannot set to $idx");
return -1; #ˆfail

};
$IAM{$i} = $idx; #record the index

}

9.12.2 SEND

elsif (/ˆsend/i)
{ my($nm);

$nm = pop(@CMDSTACK); # get destination name
on stack is "BLACKBOARD" value. We just send it thus, don’t pop it!
NO! HMMMMMMMMMM MUST SAVE, CLEAR AND RESTORE STACK, NOT PASS IT ????????????
!!!
if (! exists $IAM{$nm}) #if name not defined, fail

{ Print ("\n FAILURE: widget iam ’$nm’ doesn’t exist");
return -1;

};
$i = $IAM{$nm}; # get index
-------> first here get INSCRIPT associated with item:
my ($rs);
$rs = $INSCRIPT[$i];
if ((! defined $INSCRIPT[$i])

||(length $rs < 2)

9 SCRIPTING 96

)
{ &Print ("\n ERROR: null script for iam ’$nm’");

return -1;
};

return &RunWholeScript ($myODBC, $rs, $newW, $i, -1);
}

9.13 Experimental, obsolete and debugging routines

Avoid using these, or use them with extreme caution!

9.13.1 PRINT

Print to the console, or if redirected, to a file (usually the LOGFILE).

elsif (/ˆPRINT$/i) # print to console!
{ $i = pop(@CMDSTACK);

&Print ($i);
}

9.13.2 DEBUG

Alter the debugging flags by writing directly to BUG.

elsif (/ˆDEBUG$/i)
{ $i = pop(@CMDSTACK); # get code value eg 16

$BUG = $i;
&Print ("\n DEBUG CHANGED TO $i");

}

9.13.3 REDRAW

[This command must be fixed].

elsif (/ˆredraw$/i)
{ $i = pop(@CMDSTACK);
}

A stub at present, we simply discard the submitted value. Do NOT use this
instead of DISCARD.

9 SCRIPTING 97

9.13.4 REGEX

Unfortunately we still haven’t implemented regex on the PDA, so this command
should be regarded as experimental.

elsif (/ˆregex$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
if (/$i/)

{ push (@CMDSTACK, "1");
} else
{ push (@CMDSTACK, "0"); # clumsy.
};

}

If we finally implement the above in all its glory (and this is desirable) then
we must be careful of backticks and so forth. In the above we get the regex off the
stack, and then apply it to the next (deeper) stack item, returning 1 or 0.

When we do implement this regex on the PDA, we will probably have certain
limitations (no back references).

9.13.5 CHOOSE

Choose is discussed in section4.2.6.

elsif (/ˆCHOOSE$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
$i = &Choose ($newW, $_, $i, $myODBC, $idx);
push(@CMDSTACK, $i);

}

9.13.6 MAP

A clumsy routine to map an option value into a set of option:result pairs, returning
the required result. Deprecated. The top argument was the option:result string,
with pairs separated by pipes.

elsif (/ˆmap$/i)
{ $_ = pop(@CMDSTACK);

$i = pop(@CMDSTACK);
my(@sela);
@sela = split /\|/;
foreach (@sela)

{ /(.+):(.*)/;
if ($1 eq $i)

9 SCRIPTING 98

{ last;
};

};
if (! defined $2)

{ $i = ’’;
} else
{ $i = $2;
};

push (@CMDSTACK, $i); # THE DEFAULT IS THE LAST VALUE!!
}

9.13.7 RECIPROCAL

We should probably just get rid of this completely, although it logically fits under
arithmetic routines!

elsif (/ˆreciprocal$/i)
{ $i = pop(@CMDSTACK);

$i = 1/$i;
push (@CMDSTACK, $i);

}

9.13.8 FORCEX

This brutal forcing of the X value should probably never be used. If we decide to
keep it, it belongs near SETX.

elsif (/ˆforceX$/i)
{ $i = pop(@CMDSTACK);

$XPARAM = $i;
pop(@X); # throw away old X value
push (@X, $XPARAM); # push new value
$NEWXPARAM = $XPARAM;

}

The above ‘special pleading’, if used, will generally imply that bad program-
ming is being employed. Beware!

9.13.9 SETZ

This odd command takes a value off the stack, and uses it to set thevariablevalue
of the current item (referenced by the indexidx into TKVALUES). There are few
if any indications to use it, and there are potential problems with poptriggers!66

66LOOK into the advisability of retaining it, and the implications for poptriggers.

9 SCRIPTING 99

elsif (/ˆsetZ$/i)
{ $i = pop(@CMDSTACK);

$TKVALUES[$idx] = $i;
}

9.13.10 TEXTBEFORE

Don’t use this text-related command. it’s obsolete. Use SPLIT.

elsif (/ˆtextbefore$/i)
{ $i = pop(@CMDSTACK);

$_ = pop(@CMDSTACK);
if ($i =˜ /\./)

{ $i =˜ s/\./\\\./; }; # ugly
if (/(.*?)$i/)

{ $i = $1;
}; # if fails, simply return $i unchanged

push (@CMDSTACK, $i);
}

TEXTAFTER is also obsolete. We won’t even define it.

9.13.11 PAD

This apparently worthless command, which was used to left pad a number with
zeroes, should almost certainly be removed! Use string interpolation —$[] .

elsif (/ˆpad$/i)
{ $i = pop(@CMDSTACK);

if (($i < 0) || ($i > 31)) # arbitrary max 31
{ &Print ("\n ERROR: bad padding length <$i>");

return 0; # hmm?
};

$_ = pop(@CMDSTACK); # get string to pad
while (length $_ < $i) # hmm

{ $_ = "0$_";
};

push (@CMDSTACK, $_);
}

9.13.12 JOIN

Don’t use this either. Use string interpolation, that is"$[]$[]"

elsif (/ˆjoin$/i)
{ $i = pop(@CMDSTACK); # ? order

9 SCRIPTING 100

$_ = pop(@CMDSTACK);
$i = "$i$_"; #clumsy
push (@CMDSTACK, $i);

}

9.13.13 SECONDS

Look at the logic and value of this nasty command. Replace with e.g. INTEGER
variant! The idea is that we convert a date to ugly local system ’seconds’. Hmm.
We pop a fully fledged timestamp, and mutilate it. Also see section4.3.1.

elsif (/ˆseconds$/i)
{ $i = pop(@CMDSTACK);

$i = &ConvDate($i); #convert to seconds
push (@CMDSTACK, $i);

}

9.14 End of a long run

We finally reach the end of the mammoth DoCommand routine. If each of the
above tests failed, we have our finalelse :

else
{ Alert ($MAINW, "SCRIPT ERROR: \

I don’t understand <$_> \n(omitted ampersand?)");
&Print ("\n ERROR: I don’t understand <$_>");

};
return 1; # continue..
}

The default is to return 1 (and continue processing). Other routines which
return different values have already done so!

9.15 Subsidiary routines

Here are some of the routines referred to above.

9.15.1 XPrint

sub XPrint
{ my($d);

($d) = @_;
if ($BUG & 16)

{ &Print ($d) ;
};

}

9 SCRIPTING 101

XPrint will only print if the relevant flag in BUG is set. Otherwise it does
nothing.

9.15.2 Invoke

Given a database handle, Tk window (newW, as usual), a routine name, and a few
other arguments, Invoke retrieves the routine from the FUN database table, and
executes the script by calling on RunWholeScript. The submitted argumenti is
the index of the associated widget. For the use of the clumsy argumentpop , see
the documentation on this routine (Section9.1.1).

sub Invoke
{ my ($myODBC, $newW, $fxname, $i, $noargs, $pop);

($myODBC, $newW, $fxname, $i, $noargs, $pop) = @_;
my ($scrpt);
$scrpt = &GetSQL($myODBC,

"SELECT fBody FROM FUN WHERE fName = ’$fxname’",
"get function body");

if (length $scrpt < 2)
{ &Alert($newW, "BAD SUBROUTINE NAME: <$fxname>");

return (-1);
};

return &RunWholeScript ($myODBC, $scrpt, $newW, $i, $pop);
}

A script cannot just be one character long, which isn’t much of a limitation.

9.16 Local variables

We’ve briefly discussed these above (Section9.10). Here we flesh things out. We
have limited the number of local variables to just sixteen per menu (although the
PDA program allows 32, which is probably a bit more reasonable).67 We need to
be able to create and clear local names, as well as testing for the existence of a
variable, and retrieving its value. We’ve explored the scripting commands above,
now let’s look at the routines they call:

9.16.1 ClearLocalNames

This routine simply destroys all local names. It is invoked every time we enter a
new menu, as local variables are not passed to a new menu, except via the subject
(X).

67In terms of complexity, I believe it’s silly to allow any more than 32.

9 SCRIPTING 102

sub ClearLocalNames
{ %LOCALNAMES = ();

$LOCAL = 0;
%IAM = ();

if ($BUG == 2) { &Print ("\n debug: cleared local names"); };
}

In the current clumsy implementation, LOCAL always points to the first empty
variable. The clearing of the IAM array is part of the experimental communication
routines discussed above (Section9.12).

9.16.2 KeepLocalNames

We have the ability to transiently store the local names, and restore them if a new
menu load didn’t work out!68

sub KeepLocalNames
{ %KEPTLOCALNAMES = %LOCALNAMES;

%KEPTIAMS = %IAM;
$KEPTLOCAL = $LOCAL;

}

9.16.3 RestoreLocalNames

As noted (See KeepLocalNames above).

sub RestoreLocalNames #
{ %LOCALNAMES = %KEPTLOCALNAMES;

%IAM = %KEPTIAMS;
$LOCAL = $KEPTLOCAL;

}

9.16.4 CreateLocalName

Here we make a local variable name, using the associative array LOCALNAMES.
The corresponding NAME command is discussed in section9.10.1.

sub CreateLocalName
{ my ($name);

($name) = @_;

if ($BUG == 2)
{ &Print ("\n debug: creating local variable ’$name’");

68See usage.

9 SCRIPTING 103

};
if ($LOCAL > 15)

{ &Alert ($MAINW, "Too many locals: ’$name’ FAILED!");
return;

};
$LOCALNAMES{$name} = $LOCAL;
$LOCALARRAY[$LOCAL] = ’’;
$LOCAL ++;

}

LOCALARRAY contains the value (here cleared to a null string), and LOCAL
is used to provide the index into LOCALARRAY.

9.16.5 SetLocal

Given the name of a local variable, we set the value.

sub SetLocal
{ my ($name, $value);

($name, $value)= @_;
if ($BUG == 2)

{ &Print ("\n debug: set ’$name’ to ’$value’");
};

my ($i);
$i = $LOCALNAMES{$name};
if (! ($i =˜ /\d/))

{ &Alert ($MAINW,
"Oh dear. local var set ’$name’=’$value’ FAILED!");

return;
};

$LOCALARRAY[$i] = $value;
}

We look up the index of the name, and access LOCALARRAY using this
index.

9.16.6 IsLocal

Check whether a local name exists!

sub IsLocal
{ my ($name);

($name)=@_;
my ($i);

$i = $LOCALNAMES{$name};
if ((! defined($i))

9 SCRIPTING 104

||(! ($i =˜ /\d/)) # not numeric = doesn’t exist
)

{ return (0);
};

return (1); # is ok
}

9.16.7 FetchLocal

We fetch the value of a local name, given the name. We look up the index into
LOCALARRAY, using the associative array LOCALNAMES.

sub FetchLocal
{ my ($name);

($name) = @_;
if ($BUG == 2)

{ &Print ("\n debug: accessing name ’$name’");
};

my ($i);
$i = $LOCALNAMES{$name};
if (! ($i =˜ /\d/))

{ &Alert ($MAINW, "Dear me! ’$name’ WAS NOT FOUND!\
\n (It is CaSE sENSITIVE)");

return (’’);
};

$name = $LOCALARRAY[$i];
if ($BUG == 2)

{ &Print ("->$name");
};

return ($name);
}

The coding is clumsy.

10 PDB CREATION 105

10 PDB Creation

We have to be able to export all of our database files in a format which can be read
on a Palm PDA. The ‘PDB’ format of the PalmOS files is moderately complex.
Let’s look at it, and the format we create to represent SQL data.69

10.1 PDB file format

Whatever the platform, the PDB file format specifies onlybig-endiannumbers.
There are three sections to a PDB, the header, arecordListwhich has its own in-
ternal header, and finally, the records themselves (if there are any). The records
(data) follow immediately after the recordList, which specifies theirabsoluteoff-
sets from the very start of the PDB file.

The header fields are contained in table2.

Offset Name Contents
+0h name (asciiz) eg. “xTABLE” padded with hex zeroes
+20h attrib+version 2 bytes each
+24h creationDate ‘seconds after 12am 1 Jan 1970’
+28h modificationDate this, above must be NONZERO
+2Ch lastBackupDate this may be zero.
+30h modificationNumber 0 is ok
+34h appInfoID 0
+38h sortInfoID 0 (avoid using these 2; keep = 0)
+3Ch type we will use ‘DATA’
+40h creator ‘JoVS’
+44h uniqueIDSeed Used to generate uids! ZERO!
+48h recordList has its own HEADER, then record entries!

Table 2:PDB header fields

The recordList has a header that is usually only six bytes long. The first four
bytes are almost always zero,70 and the last two bytes are an unsigned integer
containing the number of records. If there are no records, then it is customary to
‘pad’ the recordList with two bytes.71

69The following documentation is abstracted from some of my previous documentation, and
may need a little work.

70Okay, there’s a lot of stuff about optional multiple recordLists, application info blocks and
sort info blocks, but these should all be assiduously avoided!

71We shouldn’t encounter this, as we will always have at least one record in the file — our own
header — but in Palm programming, especially with file import and export, you’ll find that some
programmers don’t always stick to the rules. Be cautious.

10 PDB CREATION 106

After its header, the recordList has a section that describes each record in the
database. Eight bytes are set aside here for each and every record entry, in the
following format:

Offset Name Contents
+0 localChunkID four byte offset of recordfrom start of PDB
+4 attributes keep this single byte zero
+5 uniqueID 3 bytes = 0; PalmOS will alter appropriately

Table 3:PDB Record Entry format

Although the above looks superficially adequate, a major liability is that one
can only determine the size of a record by subtracting its offset from the offset of
the next item. You have a particular problem when you want the size of the final
record, as now you have to subtract the offset of this item from the file size, which
is just plain silly!

10.2 Our own header

The first record in each PDB database we create will be strictly formatted accord-
ing to my own specification. The ‘final’ format is displayed in table4. The idea is
that each column descriptor is ‘its own person’, with all text names etc contained
within the scope of the column. We can then move column headers around with
alacrity.

Offset Size Contents
+0 4 CRC32 (extends over rest of header); or 0 if NO

CRC.
+4 2 Flags. Bit 0 of low order byte set to 1 iff no

CRC.
+6 2 byte length of header, including flags and CRC
+8 4 To accommodate sorting, this 32 bit number

MUST always be< 0
+C 2 all zeroes (at present)
+E 2 Number of columns=n
+10h 2 ∗ (n + 1) offsets of column descriptors, relative to start of

CRC32 above
2*n+10h (varies) Actual column descriptors

Table 4:Our header format

10 PDB CREATION 107

We haven + 1 offsets so that the width of the final column descriptor can
also be calculated with ease. We include a final ‘phantom’ column which merely
contains the offset of the first byte after the top of the last column! The length of
each column descriptor varies, but the format is constant, described in table5.

Offset Size Contents
+0 2 offset of column name fromherei.e. 10h
+2 2 k = length of column name, max 15 chars
+4 2 max width of column data
+6 1 Type of column
+7 1 scale, or zero.
+8 2 relative offset (from +0) of name of table de-

pended on
+A 2 n = length of name of table depended on, max

15 chars
+C 4 all zeroes
+10h k+1 name of column, with added 0x0∗

+11h+k n+1 name of table depended on, added 0x0∗
∗ = ASCIIZ redundancy

Table 5:Our column format

Although the first entry in Table5 (offset of column) is redundant, we retain
it, andmandateits use!72

We will later [DO THIS!] use the bytes at offset 0xC to reference database
tables and columns that refer to this table, using an internal linked list of table
names and binary column numbers.73

10.2.1 Column data types

The column data type is specified by a single character, mnemonic for the minimal
set of types we have chosen (V=varchar, I=integer, N=numeric74 with precision
and scale, D=date, T=time, S=timeStamp, F=float). We have deliberatelynot
implemented the full SQL range of data types. Table6 describes the types.

72The above has been changed from a preceding format, where we used offsets that were abso-
lute, and lumped names together after all of the column descriptors.

73Implying that any alteration to table structure will mandate mutual updates.
74The only reason why we prefer ‘numeric’ over ‘decimal’ is because it begins with an ‘N’, not

because we’re into Oracle, or anything!

10 PDB CREATION 108

Code Type Description
V Varchar Character varying
I Integer 0–999999999. For table keys
N Numeric Fixed point, with scale and precision
D Date YYYY-MM-DD

Internal format YYYYMMDD
T Time HH:MM:SS. Internally HHMMSSffffff
S TimeStamp Date followed by a space, then time
F Float Floating point. IEEE 754 standard

Table 6:Our seven SQL data types

We havenoneof the following types: smallint, real, double precision, bit,
bit varying, character, national character and its variants, CLOB, variants that
incorporate time zone, interval and boolean.75 For decimal, use numeric. We
eschew use of a fixed length character format, as this is inefficient.76

We also use ‘Integer’ in a very specific context — in our database, only inte-
ger keys are allowed, and only single primary keys are permitted! (Almost any
database can be converted to such a format, which has many merits). We dis-
courage the use of integers in other contexts — rather use a Numeric with a scale
of zero. Smallint is not provided owing to the inconsistency of the length across
machines, and its lack of utility.77

The bit type is not implemented because the information can be stored in nu-
merics/integers, in fact, on most systems usually are, as well as the unfortunate
errors contained in their SQL definition. As regards all the other types, well,
KISS.

Floating point variables are in ‘standard’ IEEE 754 format (64 bits = 53+1+10).
We thus avoid vague terms like ‘double precision’.

10.3 Data row format

There’s one final format we need to know, and that is the internal format of the
data rows. This is fairly simple, with just two tiny wrinkles. The format is shown
in table7.

75We may eventually implement a BLOB type.
76If desired, user side routines could be used to pad a varchar up to the appropriate length!
77Note that integer column variables (type I) should have a dependency on another table, but

there are two exceptions — primary keys, and components of the ‘generator’ table for such keys!
[PERHAPS DISCUSS IN MORE DETAIL]

10 PDB CREATION 109

Offset Size Contents
+0 4 CRC32. If not used, clear to zero. (NB) Extends

over rest.
+4 2 flags. Default is all zero. (0x0000). Bit 0 set to 1

if NO CRC.
+6 2 LENGTH OF THIS ROW, INCLUDING flags,

CRC32.
+8 4 Key. not stored in row data itself! value of this 32

bit signed index is NEVER< 0 or >= 109

+C 4 all zeroes.
+10h 2+2*n offsets of n items. Final entry is offset of last byte

of last item PLUS ONE

Table 7:Our data row format

The wrinkles are as follows:

1. As noted, the key is not stored in the data component (n items), but the offset
points to offset +8 from the start of the data row, where the key is stored as
a 32 bit unsigned integer (This facilitates sorting within PalmOS). The first
item in the row is always the key item.78

2. We store the offset of the ‘record that isn’t’ at the top of the data items, so
it’s easy to work out the size of the item occupying the last column.

10.4 PDB creation routines

Here we discuss the routines used in translating to PDB format. Each SQL table
is converted into a single PDB file. The PalmOS header of the PDB reflects the
number of records in our data ‘file’.

10.4.1 MakeAllPDBs

We query our meta table xTABLE, finding all of the tables, and translating each
table into a PDB file using MakeOnePDB. All that is needed is the ODBC handle,
as we brutally use the global Tk window MAINW for display.

78Much agonizing about this one. Probably a bad idea, but the temptation is just too great to
have the key as a component of the first 10h bytes of the data row, and thus the potential for
quick sorting/searching of rows based on keys without using another offset jump. The apparent
advantage is probably illusory.

10 PDB CREATION 110

sub MakeAllPDBs
{ my ($myODBC);

($myODBC) =@_;
my(@tablenames);
@tablenames = &ManySQL ($myODBC,

"SELECT xTaKey, ’|’, xTaName FROM xTABLE;",
"fetch table codes/names");

my ($tbl);
foreach $tbl (@tablenames)

{ MakeOnePDB($tbl);
};

Alert($MAINW, "\n PDBs created.");
}

10.4.2 MakeOnePDB

PDB creation is rather complex, so we’ve broken the following routine into di-
gestible chunks. An important point in all of the following is that each PDBmust
be written with the records sorted in ascending order by primary key.

First we obtain the name and ID of the table, by splitting the single argument
of MakeOnePDB on the separating pipe (\|) character. We open a PDB file to
write to on the local machine.

sub MakeOnePDB
{ my ($tbl);

($tbl) = @_;
my($tname, $tcode);
$tbl =˜ /(.+)\|(.+)/;
$tname = $2;
$tcode = $1;
print LOGFILE "\n $tname -------->"; # debug
my ($colcount, $myhdr, $myQUERY, $dTYPE);
open PDBFILE, ">pdb/$tname.PDB" or

die "*CRASH* Could not open PDB pdb/$tname \
\n(Does ’pdb’ subdirectory exist?) :$!\n";

binmode PDBFILE;

The assumption is made that the file will be written in an existing subdirectory
of the current one, calledpdb .

It’s extremely important to write to the file in binmode, as otherwise in DOS
line feed characters are converted to carriage return + line feed, with disastrous
results.

Next we create our own header. A peculiarity is that if the table is called UIDS,
it is made up entirely of integer key references, so we test for this!

10 PDB CREATION 111

my($isuids); # peculiar!
$isuids = ($tname =˜ /ˆUIDS$/i);
($colcount, $myhdr, $myQUERY, $dTYPE) =

&MakeOurHeader($myODBC, $tcode, $isuids);

We now create and format all records. FetchAllRecs internally formats each
record according to our own format.

my (@myrecs);
my($ph);
@myrecs = &FetchAllRecs ($myODBC,

$colcount, $tname, $myQUERY, $dTYPE);

Finally, we create a PalmOS header, and write everything to the PDB file we
opened above.

$ph = &MakePalmDBHeader ($myhdr, $tname, @myrecs);
print PDBFILE $ph; # write PalmOS header
print PDBFILE $myhdr; # write our header
my ($rec);
foreach $rec (@myrecs) # write all records

{ print PDBFILE $rec;
};

close PDBFILE;
}

The following sections detail the routines we’ve briefly referred to above.

10.4.3 MakeOurHeader

There are a few tricky features here. The first columnmustalways be the primary
key. There is a good rationale for being able to ‘clip out’ each column with all of
its details, to allow for easy moving around of columns as we create temporary
tables and so forth.

MakeOurHeader accepts a database handle and the unique key code of the ta-
ble (in the meta-table structure), as well as the ugly flag (isuids) which says
whether we are dealing with the peculiar UIDS table. We create a header descrip-
tor, and return four items: the number of columns, the header text string itself, as
well as a comma-delimited text ‘list’ of the column names, and a similar list of
the column types.

The column name list allows us to later on retrieve actual column data, the
latter list to format the data according to our peculiar requirements. We’ve broken
up the following code into four sections.

10 PDB CREATION 112

sub MakeOurHeader
{ my ($myODBC, $tcode, $isuids);

($myODBC, $tcode, $isuids)=@_;
my (@colkeys);
(@colkeys) = &FetchAllColumns($myODBC, $tcode);
if (! defined @colkeys) # [check me]

{ print ("\n No columns (table code : $tcode)");
return (0, "No columns found", "", "");

};
my ($colcount);
$colcount = 1+ $#colkeys; # usual Perl

We fetch column data into an array (See FetchAllColumns). Next, we create
column descriptors and concatenate them:

my ($COFF, $CH);
my($COLNAMECOMMAS, $COLTYPECOMMAS);
$COFF = ’’; # string of offsets
$CH = ’’; # string made up of column descriptors
$COLNAMECOMMAS = ’’; # string (list) of names
$COLTYPECOMMAS = ’’; # string (list) of types
my ($ck, $chead, $coffset, $cname, $ctype);
$coffset = 0x12 + 2*$colcount;

foreach $ck (@colkeys)
{ ($chead, $cname, $ctype) =

&MakeColDescriptor ($myODBC, $ck, $isuids);
$CH = $CH . $chead;
$COFF = $COFF . &Print2($coffset);
$coffset += length $chead; # move to next offset
$COLNAMECOMMAS = $COLNAMECOMMAS . $cname . ’,’;
$COLTYPECOMMAS = $COLTYPECOMMAS . $ctype . ’,’;

};
$COFF = $COFF . &Print2($coffset); # keep top, too!

The initial offset incoffset is two times the number of columns plus hex
12 — this is two bytes per column reference, plus 0x10 for the header, plus two
for an extra reference which points toafter the last column.

We then use a foreach loop to make a descriptor for each column. Three items
are returned by MakeColDescriptor: a head, a name and a type. Each of these
items is concatenated into a different string, the head going to the header string
CH, the name into the comma-delimited list COLNAMECOMMAS, and the type
into the similar COLTYPECOMMAS. Both of the comma lists end up with a
terminalcomma too.

We next make a header according to our format. This header is only 0x10
bytes long. We’ve left comments in the following to make allocation clear.

10 PDB CREATION 113

3. create overall header (0x10 bytes):
my ($myh);

Offset Size Description
+0 4 CRC32

$myh = &Print4 (0);
+4 2 Flags.

$myh = $myh . &Print2 (1);
+6 2 Total header length

$myh = $myh . &Print2 (0x10 +
length($COFF) +
length($CH));

+8 4 This number must be < 0:
$myh = $myh . &Print4 (0x80000000);

+C 2 all zeroes:
$myh = $myh . &Print2 (0);

+E 2 Number of columns
$myh = $myh . &Print2 ($colcount);

The CRC32 field is at present unused, and the flag field will for now always
contain just 1. The value at offset 0xC is zero, for now. Finally, we return results,
chopping off the terminal commas.

4. return results:
chop($COLNAMECOMMAS);
chop($COLTYPECOMMAS);
return ($colcount,

$myh . $COFF . $CH,
$COLNAMECOMMAS,
$COLTYPECOMMAS);

}

10.4.4 FetchAllColumns

FetchAllColumns is called by the preceding routine. It accepts a database con-
nection and the key of the table, and returns an array of column keys. Using our
meta-data, we first identify the primary key (as this must be first in the list of
column keys).

sub FetchAllColumns
{

my ($myODBC, $tcode);
($myODBC, $tcode) = @_;

my($key1);
$key1 = &GetSQL ($myODBC,

"SELECT xLIMIT.xLiColumn FROM xLIMIT, xCOLUMN \
WHERE xLIMIT.xLiColumn = xCOLUMN.xCoKey \
AND xLIMIT.xLiType = ’P’ AND xCOLUMN.xCoTable = $tcode",

10 PDB CREATION 114

"get primary key");
if (! $key1)

{ print ("\n No primary key (table code : $tcode)");
return ’’; # [check me]

};
my (@colkeys);
@colkeys = &ManySQL ($myODBC,

"SELECT xCoKey FROM xCOLUMN where xCoTable = $tcode \
AND xCoKey <> $key1 \
ORDER BY xCoKey;",

"fetch columns for this table");
unshift(@colkeys, $key1);
return (@colkeys);

}

After retrieving the remaining keys using a second SQL query, we put the
primary key (key1) up front, and return the list of keys.

10.4.5 MakeColDescriptor

This routine returns information about a column — its header, its name, and its
type. The header is in a format which facilitates easy moving around of column
headers.79

MakeColDescriptor accepts an ODBC connection, the key of the column in
our meta-tables, and that nasty flagisuids . We’ve chopped the code up into
four sections:

sub MakeColDescriptor
{ my ($myODBC, $ck, $isuids);

($myODBC, $ck, $isuids) = @_;

1. Get basic column information.
my ($cwidth, $cscale, $ctype, $colname);
$cwidth = &GetSQL ($myODBC,

"SELECT xCoSize FROM xCOLUMN WHERE xCoKey = $ck;",
"get column width");

$cscale = &GetSQL ($myODBC,
"SELECT xCoScale FROM xCOLUMN WHERE xCoKey = $ck;",
"get column scale");

$ctype = &GetSQL ($myODBC,
"SELECT xCoType FROM xCOLUMN WHERE xCoKey = $ck;",
"get column type");

if ($isuids) { $ctype = ’I’; }; # force 32 bit integer

79Despite the fact that at present we don’t have e.g. correlated subqueries on the PDA, this
approach will make things a lot easier should we need temporary data tables, subqueries, views
and so on!

10 PDB CREATION 115

$colname = &GetSQL ($myODBC,
"SELECT xCoName FROM xCOLUMN WHERE xCoKey = $ck;",
"get name of this column");

if ($ctype eq ’I’)
{ $cwidth = 4;
};

First we obtain basic information about the column — its width, scale and
type, as well as the name. We fiddle a little to ensure that integers have a width of
4, and that UIDS values are all integers (eugh)!

Things which we could (but don’t) do include ensuring that the column type is
a single byte, and other checks on width and scale. The SQL code is atrociously
clumsy. Next, let’s resolve foreign keys, get table name for the foreign key . . .

my($ctable, $cnlen, $tnlen);
$cnlen = length $colname;
$ctable = ’’;
$tnlen = 0;
my ($xtbl);
$xtbl = &GetSQL ($myODBC,

"SELECT xLiTable FROM xLIMIT \
WHERE xLiColumn = $ck AND xLiType = ’F’;",

"get foreign key table");
if ($xtbl)

{ $ctable = &GetSQL ($myODBC,
"SELECT xTaName FROM xTABLE \

WHERE xTaKey = $xtbl;",
"get table name");

$tnlen = length $ctable;
};

print LOGFILE ("\n $colname($ctype) :\
$cwidth($cscale) -> $ctable");

In the above we might check that key reference is type I, and fail (or coerce) if
not!80 The LOGFILE printing is simply debugging. Next we create our ‘column
descriptor’. Again, we’ve left in extensive comments to explain what we’re doing:

my ($descrip);
$descrip = ’’;
my($asciiz);
$asciiz = 1; # terminal zero=yes

+0 2 Offset of column name, from here!
$descrip = $descrip . &Print2 (0x10);
+2 2 Length of column name
$descrip = $descrip . &Print2 ($cnlen);

80In our restricted environment, this is appropriate.

10 PDB CREATION 116

+4 2 Max width of column data (n bytes)
$descrip = $descrip . &Print2 ($cwidth);
+6 1 Type of column
$descrip = $descrip . $ctype;
+7 1 Scale, or zero.
$descrip = $descrip . sprintf ("%c", $cscale);
+8 2 Offset of name of table
$descrip = $descrip . &Print2 (0x10 + $cnlen + $asciiz);
+A 2 Length of name of table depended on
$descrip = $descrip . &Print2 ($tnlen);
+C 4 all zeroes
$descrip = $descrip . &Print4 (0);

Even though we don’t use ASCIIZ (zero-terminated) strings, we slip in a ter-
minal zero in the column name.81 Another redundancy is that at offset +2 we
have the offset of the start of the name, despite then name ‘always’ starting at off-
set 0x10. Routines accessing our column descriptor are well advised to read this
offset rather than assuming 0x10.

There are several cautions:

• We limit the length of a column name to 15 characters.

• The name length written at offset +4 (cnlen) does NOT include the termi-
nal zero

• Scale and type are single characters (We might check this!)

• The offset of the table name referenced is relative to the start of this descrip-
tor.82

See how we liberally use the routines Print2 and Print4 to ‘print’ exactly two
or four hexadecimal characters, concatenating these strings ontodescrip .

The final four bytes will point to the DEFAULT value for a column, something
which we have not yet implemented.83 Finally, we concatenate all strings into a
descriptor:

4. append the string(s):
$descrip = $descrip . $colname;
if ($asciiz)

{ $descrip = $descrip . sprintf ("%c", 0x0);
};

81The variable ‘asciiz’ is clumsy but explicit.
82A number is present here, even if there is no table name — but then the length of the name in

the next entry will be zero.
83Incredulous gasps! There’s room for a pointer and length.

10 PDB CREATION 117

if ($tnlen) # if table dependency
{ $descrip = $descrip . $ctable;

if ($asciiz)
{ $descrip = $descrip . sprintf ("%c", 0x0);

}; };
return ($descrip, $colname, $ctype);

}

The standard Perl character printer, sprintf is used for single character printing.

10.4.6 FetchAllRecs

Given a table and the column names, we retrieve corresponding data, returning an
array ofall rows! Data are formatted appropriately. We break up the routine into
bite-sized chunks.

The routine accepts a database connection, the number of columns, the name
of the table, the list of columns created by MakeOurHeader (myQUERY), and the
corresponding list of datum types (dTYPE).

sub FetchAllRecs
{ my ($myODBC, $colcount, $tname, $myQUERY, $dTYPE);

($myODBC, $colcount, $tname, $myQUERY, $dTYPE) = @_;
if ($colcount < 1)

{ return ""; # fail [check me]
};

my (@dtypes); # column ’data types’
$_ = $dTYPE;
@dtypes = split /,/; # array of column data types
my ($keyname);

$myQUERY =˜ /([ˆ,]+),/; # get key column
$keyname = $1;
$myQUERY =˜ s/,/, ’\@\|’, /g;

The first column isalways the primary key. When we process myQUERY
above, we replace all of the delimiting commas with the character sequence@|
implying that this particular sequence cannot be used in any string.84 Next, we
select the columns (with the peculiar delimiter):

my ($thisSQL);
$thisSQL = "SELECT $myQUERY FROM $tname ORDER BY $keyname";
my($reccnt); # total number of rows
my(@myrecs);
(@myrecs) = &ManySQL ($myODBC,

$thisSQL, "get all values");

84Not perhaps a major limitation, but one well worth noting!

10 PDB CREATION 118

$reccnt = 1 + $#myrecs;
print LOGFILE (" .. records=$reccnt ");
my(@c);
my($i, $ci);
my($offs);
my($dat);
my($formrec);
my($hdr);
$i = 0;

The variables defined above arec , an array of column values for a row;i and
ci , row and column counts;offs , the offset of an item in a generated row;dat ,
a concatenated string of data;formrec , the output string for a row which has
been formatted; andhdr , our header section for the row.85

Let’s now create an outer ‘while’ loop which iterates over all rows:

while ($i < $reccnt)
{ $_ = $myrecs[$i];

print LOGFILE "\n Record($i) <$_>";
@c = split /\@\|/;
$offs = 0x10 + 2 + 2*$colcount; # offset of 1st datum
my ($prim);
$prim = $c[0]; # primary key (clumsy but explicit)
$formrec = &Print2(8);
$dat = ’’;
$ci = 1;

At the start of this outer loop, we first pull out the primary key, that is, c[0]; we
then print its offset, which is always simply 0008, to formrec. We also initialise
the dat string to null, and the column count (ci) for the inner loop.86

while ($ci < $colcount)
{ $formrec = $formrec . &Print2($offs); # write offset

my ($formd);
if (! defined $c[$ci])

{ $formd = "";
} else
{ $formd = &FormatDatum($dtypes[$ci], $c[$ci]);

print LOGFILE (
"\n $c[$ci]: $dtypes[$ci] -> $formd");

if (defined $formd)
{ $offs += length $formd;

$dat = $dat . sprintf ("%s", $formd);
} else

85Every row has its own tiny header.
86The value of ci is 1 because the first item, the primary key, has already been processed.

10 PDB CREATION 119

{ print LOGFILE
"\n Bad formatting: $dtypes[$ci]:$c[$ci] (@dtypes)";

};
};

$ci ++;
};

$formrec = $formrec . &Print2 ($offs); #[7]
$formrec = $formrec . $dat; # append actual strings

In the inner loop, we write the offset of each item to formrec (just as we wrote
0008 for the offset of the primary key), and either write nothing or a formatted
version of the datum.87 Null strings are therefore represented by a pointer to a
datum of null length (The datum length can always be worked out by finding the
difference between the pointer to the current datum and the next one — this works
because we also have a pointer to just after the end of the last datum, as if there
was yet another datum at the end of the row of data).

The marker[7] indicates where we write that final offset pointing to the first
byte after the top of the last datum. Finally we make the header:

finally, make the HEADER:
+0 4 CRC32:
$hdr = &Print4 (0);
+4 2 flags:
$hdr = $hdr . &Print2 (1);
+6 2 Row length
$hdr = $hdr . &Print2 ($offs);
+8 4 Key:
$hdr = $hdr . &Print4 ($prim);
+C 4 all zeroes:
$hdr = $hdr . &Print4 (0);

$formrec = $hdr . $formrec; # [8]
$myrecs[$i] = $formrec;
$i ++; # BUMP record count

};
return (@myrecs);

}

The row length includes the flags and CRC32 (or the four zero bytes in its
place). As usual, a flag value of 1 signals ‘no CRC’. See how we put the primary
key value at offset +8.88 In line [8] we complete the line by prepending the
header.89

87We also keep a record of what we’ve done in LOGFILE, for debugging purposes.
88This convention, about which I agonized a lot — it may well be inappropriate — allows us to

sort rows and search on them only accessing the header of each row.
89The subsequent line of code is rather clumsy.

10 PDB CREATION 120

10.4.7 FormatDatum

Here we format all data according to our own peculiar internal SQL conventions
on the PDA. We initially check the datum type (dtype) as well as the second
argument which we load straight into$_ .

sub FormatDatum
{ my ($dtype);

($dtype, $_) = @_;
if (! defined $_)

{ return "";
};

if (length $_ < 1)
{ return "";
};

Now let’s examine the response to each datum type. First numeric:

if ($dtype eq ’N’)

{ /(\d+)\.?(\d*)/;
if (! defined $2)

{ $_ = $1;
} else
{ $_ = "$1$2";
};

}

For a fixed point number we require the precision and scale. We pull out the
parts before and after the period. The above routine assumes that the number is
already formatted according to the required precision and scale, so that there is a
correct number of digits after the point.90 The number is right aligned, with no
leading zeroes. Next, a date:

elsif ($dtype eq ’D’) # date is YYYY-MM-DD --> YYYYMMDD
{ $_ = &SqueezeDate($_);
}

All we do with a date is clip the hyphens out of the assumed YYYY-MM-DD
to create YYYYMMDD. A time is similarly squeezed:

elsif ($dtype eq ’T’)
{ $_ = &SqueezeTime($_);
}

90Check this for the various databases, one or more commercial databases may screw this up?

10 PDB CREATION 121

The squeezed time will always have twelve digits, the last six for the fraction
after the period. See SqueezeTime for details. Next a timestamp:

elsif ($dtype eq ’S’)
{ my ($dt, $tm);

/(.+) (.+)/;
$tm = $2;
$dt = &SqueezeDate($1);
$_ = &SqueezeTime($tm);
$_ = "$dt$_";

}

The timestamp ends up with eighteen ‘squeezed’ digits.91 The varchar (char-
acter varying) field is easy as we do precisely nothing:

elsif ($dtype eq ’V’)
{
}

You might think we need to verify the length, but long strings will have al-
ready been truncated or otherwise abused by the database! Penultimately we have
floating point numbers:

elsif ($dtype eq ’F’)
{

$_ = pack ("d", $_);
my($i0, $i1); # [9]
($i0, $i1) = unpack("L2", $_);
if ($BIGENDIAN)

{ $_ = pack ("N2", $i0, $i1);
} else
{ $_ = pack ("N2", $i1, $i0);
}; # [check me!?]

}

In the above the Perl L2 unpack instruction unpacks two unsigned longs
Perl uses double precision, so we seem safe if we pack using the Perl pack

command. Remember that certain databases may not necessarily conform to IEEE
754 floating point double precision, however.

There is another wrinkle. If our machine is 8086-based, then Perl will store
the float as little-endian. We want big-endian, which is our invariant convention,
so we use the trickery in line[9] onwards.

The last option (for now) is a (nearly) 4-byte integer:92

91This storage is far from economical, as we could easily use BCD, for example, but we don’t.
92We limited integers to the range 0–999 999 999, remember?

10 PDB CREATION 122

elsif ($dtype eq ’I’)
{ $_ = &Print4($_);
}

In our restricted database, we limit keys to integers in the range zero to a
billion minus one. If all else fails, we print a log message; we then exit, returning
the value in$_ .

else
{ print LOGFILE

"\n Bad datum type: $dtype ($_)";
};

return $_;
}

10.4.8 SqueezeDate

Here’s the first of the squeezing routines. We trim the dashes out of a date:93

sub SqueezeDate
{ ($_) = @_; # redundant.

my ($y,$m,$d);
if (! /(\d{4})-(\d{1,2})-(\d{1,2})/)

{ print LOGFILE "\n Bad date <$_>";
return "";

};
$y = $1;
$m = $2;
$d = $3;
if (length $m < 2)

{ $m = "0" . $m;
};

if (length $d < 2)
{ $m = "0" . $m;
};

$_ = "$ymd";
return $_; # redundant.

}

10.4.9 SqueezeTime

Similarly for time:

93Hideous code, I’m afraid!

10 PDB CREATION 123

sub SqueezeTime
{ ($_) = @_;

my ($h, $m, $s, $f);
if (! /(\d{1,2}):(\d{1,2}):(\d{1,2}).?(\d{0,6})/)

{ print LOGFILE "Bad time <$_>";
return "";

};
$h = $1;
$m = $2;
$s = $3;
$f = $4;
if (length $h < 2)

{ $h = "0" . $h;
};

if (length $m < 2)
{ $m = "0" . $m;
};

if (length $s < 2)
{ $s = "0" . $s;
};

while (length $f < 6)
{ $f = "$f" . "0";
};

$_ = "$hms$f";
return ($_);

}

10.4.10 MakePalmDBHeader

This routine rather carefully writes a PDB file header. Note that the format is that
specified by PalmOS for PDBs on the desktop. The internal format used on the
Palm PDA itself is their proprietary format, and may differ!94

The PalmOS header must not only contain a whole lot of Palm stuff, but also
refer to the offsets of our SQL ‘header’ line, as well as specify the offset of each
of the records in our SQL file. We therefore submit three parameters: our header,
the name of the table, and an array of records. The data lines are already sorted
by primary key. We’ve broken the code into three:

First we determine the number of records (clumsily) and create the PalmOS
header:

sub MakePalmDBHeader
{ my ($myhdr, $tname, @myrecs);

($myhdr, $tname, @myrecs) = @_;
my($reccount);

94But we don’t have to worry about this!

10 PDB CREATION 124

$reccount = 1 + $#myrecs;
$reccount ++; # +1 for header column
my ($ph, $strlen);

$strlen = 32 - (length $tname);
$ph = sprintf "$tname"; # a. name:
$ph = $ph . &Print0 ($strlen); # pad with hex zeroes
b. +20h attrib+version (2 bytes each)
$ph = $ph . &Print4 (0);
c. +24h creationDate
$ph = $ph . &Print4 (1);
d. +28h modificationDate
$ph = $ph . &Print4 (1);
e. +2Ch lastBackupDate:
$ph = $ph . &Print4 (0);
f. +30h modificationNumber
$ph = $ph . &Print4 (0);
g. +34h appInfoID
$ph = $ph . &Print4 (0);
h. +38h sortInfoID
$ph = $ph . &Print4 (0);
i. +3Ch type
$ph = $ph . sprintf ("%s", ’DATA’);
j. +40h creator
$ph = $ph . sprintf ("%s", ’JoVS’);
k. +44h uniqueIDSeed
$ph = $ph . &Print4 (0);
+48h normally zero
$ph = $ph . &Print4 (0);
+4Ch number of records (UInt16)
$ph = $ph . &Print2 ($reccount);
+4Eh +6
RECORD ENTRIES GO HERE...

Notes:

• We should probably check that the length of tname is under 32 bytes, and
otherwise truncate;

• All dates are ‘seconds after 12am 1 Jan 1970’;

• Only lastBackupDate is allowed to be zero (on pain of pain)!

• Avoid using appInfoID and sortInfoID

• ‘JoVS’ is our arbitrary code (We should register this with PalmOS);

• uniqueIDseed should be cleared to zero

10 PDB CREATION 125

The number of records at +4C is followed by record entries of the ‘Recor-
dEntryType’ format. This format comprises a four byte (dword) offset of the raw
record data, measured from the start of the PDB file, and four bytes all of which
we reset to zero.95 The first record entry is slightly special, referring to our ‘own’
SQL header:

my ($uptotop); # offset of 1st record from start of PDB
$uptotop = 0x4E + (8*$reccount); # 8 bytes per record

first record is distinct, OUR header:
$ph = $ph . &Print4 ($uptotop);
$ph = $ph . &Print4 (0); # 0 attrib + uniqueID
$uptotop += length $myhdr; # next offset..

Next, fill in pointers to all of the remaining records:

my($c);
$c = 0;
print LOGFILE ("\n Creating $reccount-1 records: ");
while ($c < ($reccount-1)) # -1 as header already done

{ $ph = $ph . &Print4 ($uptotop);
print LOGFILE (" $c:$uptotop "); # debug
$ph = $ph . &Print4 (0); # as before
$uptotop += (length $myrecs[$c]);
$c ++;

};
return $ph;
}

We decrease the count by one in the above because reccount includes the
header. At the end, we simply return the completed header.

10.4.11 Print0

This trivial routine creates a string made up of the required number of hexadecimal
zeros.

sub Print0
{ my ($len, $s);

($len) = @_;
$s = "";
while ($len > 0)

{ $s = "$s" . sprintf ("%c", 0); # clumsy
$len --;

95PalmOS fills these in.

10 PDB CREATION 126

};
return $s;

}

10.4.12 Print4

An inelegant routine which prints an integer as a 4-byte hexadecimal number.
Formatting is always big-endian.

sub Print4
{ my ($i, $s);

($i) = @_;

my ($n1, $n2, $n3, $n4);
$n1 = $i % 256; #modulo
$i /= 256;
$n2 = $i % 256;
$i /= 256;
$n3 = $i % 256;
$i /= 256;
$n4 = $i % 256;

$s = sprintf ("%c%c%c%c", $n4, $n3, $n2, $n1);
return $s;

}

10.4.13 Print2

Similar to Print4, but prints two bytes, also in big-endian format.

sub Print2
{ my ($i, $s);

($i) = @_;
my ($n1, $n2);
$n1 = $i % 256;
$i /= 256;
$n2 = $i % 256;
$s = sprintf ("%c%c", $n2, $n1);
return $s;

}

We might simply say “$n2 = $i ”, if we were certain the submitted number
was in range.

