
Network
Programming

with
Perl

Graham Barr

<gbarr@pobox.com>

Slide 2

Agenda

Introduction

Properties of a socket

The socket model

TCP server/client
examples

Using UDP

UDP server/client
examples

IO::Socket, with
examples

☞

☞

☞

☞

☞

☞

☞

Find information about
a socket

Types of server

Common problems

Commonly used
network protocols

Case studies

☞

☞

☞

☞

☞

Slide 3

Introduction

Perl provides direct access to the C library routines for
socket communication. Often, arguments and return
values are constants defined in the C header files, or
are data structures which Perl will pass in a packed
binary format.

The Socket module provides these constants and also
many functions for packing and unpacking these data
structures

The IO::Socket module provides a higher level access
to creating a socket

CPAN contains many modules that provide a very high
level access to specific application protocols. e.g.
Net::FTP, Net::SMTP, Net::DNS, etc.

☞

☞

☞

☞

Slide 4

Socket properties

A generic socket has three properties

A type

An address family

A communication protocol

☞

Ä

Ä

Ä

Slide 5

Socket types

There are many types of socket, these include

Stream - Connection oriented transport

Datagram - Connection-less transport

Raw - Often used to talk directly to the IP layer. For
example, ping uses a raw socket to send ICMP
packets

The system socket functions use numbers to represent
these. The Socket module exports constants for these

use Socket qw(SOCK_STREAM SOCK_DGRAM SOCK_RAW);

☞

Ä

Ä

Ä

☞

Slide 6

Address families

Available address families include

AF_UNIX - Communication is limited to a single
machine. Sometimes called AF_LOCAL or AF_FILE.
The address is a filesystem path on the local
machine.

AF_INET - This address family uses the IP protocol
to communicate with other machines over a network.
The address is 193.168.1.200/21

Others include AF_APPLETALK, AF_IPX,
AF_DECnet ...

These are represented as numbers and the Socket
module exports constants for these

use Socket qw(AF_UNIX AF_INET AF_APPLETALK);

☞

Ä

Ä

Ä

☞

Slide 7

Communication protocols

There are two protocols that are mainly used

TCP is used with a stream socket to provide a
reliable, sequenced, flow-controlled channel of
communication.

UDP is used with a datagram socket and delivers
datagrams to other endpoints. Message boundaries
are preserved, but sequence is not and delivery is
not guaranteed.

Protocols are represented as numbers, but are not
available as constants. Perl provides some functions for
translating protocol names to numbers and visa-versa.

$number = getprotobyname(’tcp’);
$name = getprotobynumber(6);

☞

Ä

Ä

☞

Slide 8

The socket model

The Server

Creates a generic socket with socket

Binds to a known address with bind

Tell system to watch for incoming connections with
listen

Waits for a connection with accept or select

☞

Ä

Ä

Ä

Ä

Slide 9

The socket model (cont.)

The client

Creates generic socket with socket

Binds to an address with bind

Connects to server with connect, using the known
address. This establishes the connection.

☞

Ä

Ä

Ä

Slide 10

The socket model (cont.)

The server is notified of the new connection.

Either accept returns or select will report the
socket as readable.

Server and Client communicate.

Server and Client close the socket to break the
connection.

☞

Ä

☞

☞

Slide 11

Creating a socket

To create a socket you need to know all three
properties about the socket.

import required constants from the Socket module

use Socket qw(AF_INET SOCK_STREAM);

Obtain the value for the protocol

$proto = getprotobyname(’tcp’);

Create the socket

socket(SOCK, AF_INET, SOCK_STREAM, $proto)
 || die "socket: $!";

☞

Ä

Ä

Ä

Slide 12

Binding the socket

bind takes two arguments, the first is the socket and
the second is a packed address.

The Socket module provides functions for packing and
unpacking addresses.

sockaddr_in allows you to either pack or unpack an
AF_INET socket address. In a scalar context it packs
and in a list context it will unpack.

$paddr = sockaddr_in($port, $inaddr);
($port, $inaddr) = sockaddr_in($paddr);

If the use of context here disturbs you then you can
explicitly call pack_sockaddr_in and
unpack_sockaddr_in.

☞

☞

☞

☞

Slide 13

Binding the socket (cont.)

Many protocols, for example FTP and Telnet, use well
known port numbers. But, like communication protocols,
these are not provided by constants but by lookup
routines

$port = getservbyname(’ftp’,’tcp’);
$service = getservbyport(21, ’tcp’);

($name, $aliases, $port, $proto)
 = getservbyname(’ftp’, ’tcp’);

($name, $aliases, $port, $proto)
 = getservbyport(21, ’tcp’);

If you do not care which port the socket is bound to, you
can use 0 and the kernel will select a free port number.

☞

☞

Slide 14

Binding the socket (cont.)

Besides the port, sockaddr_in also needs an IP
address.

If you do not want to bind the socket to a particular
interface the you can use INADDR_ANY.

If you want to bind the socket to a particular interface
then you must pass a packed IP address.

The Socket module provides inet_aton and
inet_ntoa to pack and unpack IP addresses.

$ipaddr = inet_aton("localhost");
$quad = inet_ntoa($ipaddr);

Not calling bind is treated the same as calling bind
with a port of 0 and INADDR_ANY. This is not normally
useful for a server.

☞

☞

☞

☞

☞

Slide 15

Binding the socket (cont.)

If the socket is of type AF_UNIX the the socket
addresses can be manipulated with sockaddr_un,
pack_sockaddr_un and unpack_sockaddr_un.

$paddr = sockaddr_un("/tmp/sock");
($path) = sockaddr_un($paddr);

☞

Slide 16

Listen for connections

On the server side you must tell the system that you
want to wait for incoming connections. This is done with
the listen function

listen(SOCK, 10);

The second argument is the queue size.

SOMAXCONN, which is exported by Socket, is the
maximum value your system will accept.

On most systems, passing a value of 0 will cause
the value SOMAXCONN to be used.

On most systems, passing a value greater than
SOMAXCONN will silently be ignored and the value of
SOMAXCONN will be used.

☞

Ä

Ä

Ä

Ä

Slide 17

The client side

Creating a socket on the client side is similar.

$proto = getprotobyname(’tcp’);
socket(SOCK, AF_INET, SOCK_STREAM, $proto)
 or die "socket: $!";

Some servers may require a client to bind to a particular
port. Some require use of a port number less than
1024, which on UNIX can only be performed by root.

$sin = sockaddr_in($port, INADDR_ANY);
bind(SOCK, $sin) or die "bind: $!";

As with the server side, if bind is not called, the kernel
will select a port number when connect is called. The
address will be the address of the interface used to
route to the server.

☞

☞

☞

Slide 18

Connecting to the server

Once a socket has been created on the client it must
connect to the server at the known address.

connect takes two arguments, the socket and a
packed socket address for the port on the remote host
to connect to

$port = getservbyname(’daytime’,’tcp’);
$inaddr = inet_aton(’localhost’);
$paddr = sockaddr_in($port, $inaddr);

connect(SOCK, $paddr) or die "connect: $!";

☞

☞

Slide 19

Connecting to the server (cont.)

connect has a built-in timeout value before it will return
a failure.

On many systems this timeout can be very long.

One approach to shorten this time is to use an alarm.

eval {
 local $SIG{ALRM} = sub { die "Timeout" };
 alarm 20; # a 20 second timeout
 my $val = connect(SOCK, $paddr);
 alarm 0;
 $val;
} or die "connect: $!";

Another approach is to use non-blocking IO.

☞

☞

☞

☞

Slide 20

Accepting a client connection

When a client calls connect, the server will be notified
and can then accept the connection.

$peer = accept(CLIENT, SOCK);

This will create a perl filehandle CLIENT which can be
used to communicate with the client.

$peer will be a packed address of the client's port, and
can be unpacked with

($port,$inaddr) = sockaddr_in($peer);
$dotted_quad = inet_ntoa($inaddr);

☞

☞

☞

Slide 21

example protocols

The daytime protocol is used to keep the time on two
machines in sync.

When the server gets a request from a client, it
responds with a string which represents the date on
the server.

The echo protocol can be used to indicate that a
machine is up and running. It can also be used to check
the quality of the network.

When the server receives anything, it responds by
sending it back where it came from.

☞

Ä

☞

Ä

Slide 22

#!/bin/perl -w
Example of a TCP daytime client using perl calls directly

use Socket qw(AF_INET SOCK_STREAM inet_aton sockaddr_in);

get protocol number
$proto = getprotobyname(’tcp’);

create the generic socket
socket(SOCK, AF_INET, SOCK_STREAM, $proto) or die "socket: $!";

no need for bind here

get packed address for host
$addr = inet_aton(’localhost’);

get port number for the daytime protocol
$port = getservbyname(’daytime’, ’tcp’);

pack the address structure for connect
$paddr = sockaddr_in($port, $addr);

TCP daytime client

Slide 23

connect to host
connect(SOCK, $paddr) or die "connect: $!";

get and print the date
print <SOCK>;

close the socket
close(SOCK) || die "close: $!";

TCP daytime client (cont.)

Slide 24

#!/bin/perl -w
Example of a daytime TCP server using perl functions

use Socket qw(INADDR_ANY AF_INET SOMAXCONN SOCK_STREAM sockaddr_in);

Get protocol number
my $proto = getprotobyname(’tcp’);

Create generic socket
socket(SOCK, AF_INET, SOCK_STREAM, $proto) or die "socket: $!";

Bind to the daytime port on any interface
my $port = getservbyname(’daytime’,’tcp’);
my $paddr = sockaddr_in($port, INADDR_ANY);

bind(SOCK, $paddr) or die "bind: $!";

Notify the kernel we want to accept connections
listen(SOCK, SOMAXCONN) or die "listen: $!";

while(1) {
 if(accept(CLIENT, SOCK)) {
 print CLIENT scalar localtime, "\n";
 close CLIENT;
 }
}

TCP daytime server

Slide 25

Using UDP

With UDP, it is not normally required that the client
connect to the server.

Sending data is performed with send instead of
syswrite.

send, unlike syswrite, always sends the whole
buffer passed.

send takes two extra arguments, flags and the
destination address. On a connected UDP socket
the destination address is optional.

send(SOCK, $buffer, 0, $paddr);

☞

☞

Ä

Ä

Slide 26

Using UDP (cont.)

Reading data is performed with recv instead of
sysread.

recv(SOCK, $buffer, $length, $flags);

recv will read the next datagram. If the length of the
datagram is longer than $length, then the rest of the
datagram will be discarded.

The return value from recv is the packed address of
the sender.

☞

Ä

Ä

Slide 27

Using UDP (cont.)

The flags argument can be set to MSG_PEEK to read
data from the next datagram without removing it from
the input queue. This is useful if you do not know the
size of the incoming datagrams.

recv(SOCK, $buffer, 4, MSG_PEEK);
$length = unpack("N",$buffer);
recv(SOCK, $buffer, $length, 0);

☞

Slide 28

#!/bin/perl -w
Example of a daytime UDP client using perl calls directly

use Socket qw(AF_INET SOCK_DGRAM inet_aton sockaddr_in);

get protocol number
$proto = getprotobyname(’udp’);

create the generic socket
socket(SOCK, AF_INET, SOCK_DGRAM, $proto) or die "socket: $!";

no need for bind here

get packed address for host
$addr = inet_aton(’localhost’);

get port number for the daytime protocol
$port = getservbyname(’daytime’,’udp’);

pack the address structure for send
$paddr = sockaddr_in($port, $addr);

UDP daytime client

Slide 29

send empty packet to server
send(SOCK,"", 0, $paddr) or die "send: $!";

$SIG{ALRM} = sub { die "Timeout" };

eval {
 recv(SOCK, $date, 1024, 0) or die "recv: $!\n";
 print $date,"\n";
} or warn $@;

close(SOCK);

UDP daytime client (cont.)

Slide 30

#!/bin/perl -w
Example of a daytime UDP server using perl functions

use Socket qw(INADDR_ANY AF_INET SOMAXCONN SOCK_DGRAM sockaddr_in);

Get protocol number
my $proto = getprotobyname(’udp’);

Create generic socket
socket(SOCK, AF_INET, SOCK_DGRAM, $proto) or die "socket: $!";

Bind to the daytime port on any interface
my $port = getservbyname(’daytime’,’udp’);
my $paddr = sockaddr_in($port, INADDR_ANY);

bind(SOCK, $paddr) or die "bind: $!";

no listen() as that is a SOCK_STREAM call()

$rin = "";
vec($rin, fileno(SOCK), 1) = 1;

while (select($rout=$rin, undef, undef, undef)) {
 $from = recv(SOCK, $buffer, 1, 0) or next;
 send(SOCK, scalar localtime, 0, $from) || die "send: $!";
}

UDP daytime server

Slide 31

IO::Socket

IO::Socket is designed to make the creation of sockets
easier.

Although IO::Socket defines methods for most socket
operations, it is not recommended that you use those
which directly map onto perl functions.

The IO::Socket object can be used anywhere you
would normally use a filehandle.

☞

☞

Ä

Slide 32

Create a socket with IO::Socket

The constructor for IO::Socket takes a list of name =>
value pairs.

IO::Socket->new only knows about one, which tells it
the domain of the socket. Each domain is implemented
in a different class and support their own name => value
pairs.

There are two ways in which a socket can be created.
Both of the following do the same

$sock1 = IO::Socket->new(
 Domain => ’INET’, @args);
$sock2 = IO::Socket::INET->new(@args);

☞

☞

☞

Slide 33

IO::Socket::INET

An INET domain socket supports the following named
arguments

PeerAddr - Remote host to connect to.

PeerPort - The port number at PeerAddr to connect

LocalAddr - Bind the socket to the this address

LocalPort - Bind the socket to this port

Proto - The protocol to use

Type - The type of socket

Listen - Length of queue for a server socket

Reuse - Allow reuse of address

Timeout - Timeout value to use during connecting

☞

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Slide 34

IO::Socket::INET (cont.)

IO::Socket::INET also provides a simple way to create
the most commonly used sock. That is, a TCP
connection to another host and port

use IO::Socket;
$s = IO::Socket::INET->new(’localhost:80’)
 || die "IO::Socket: $@";

is the same as

$s = IO::Socket::INET->new(
 PeerAddr => ’localhost’,
 PeerPort => 80,
 Proto => ’tcp’
);

☞

Slide 35

#!/bin/perl -w
Example of tcp daytime client using IO::Socket

use IO::Socket;

my $sock = IO::Socket::INET->new("localhost:daytime")
 or die "IO::Socket: $@";

Print the date
print <$sock>;

close the socket
close($sock) || die "close: $!";

IO::Socket TCP daytime client

Slide 36

Finding information about a socket

getsockname will return a packed socket address for
the socket.

$paddr = getsockname(SOCK);
($port, $ipaddr) = sockaddr_in($paddr);
$quad = inet_ntoa($ipaddr);

getpeername will return a packed socket address for
the socket at the other end of the connection.

$paddr = getpeername(SOCK);
($path) = sockaddr_un($paddr);

☞

☞

Slide 37

Finding information about a socket

getsockopt can be used to get various options.

SO_TYPE allows you to determine the type of
socket. (ie SOCK_STREAM, SOCK_DGRAM etc.)

$type = getsockopt(SOCK, SOL_SOCKET, SO_TYPE);

This can be useful for servers that inherit a socket
from their parent process, so they do not know what
they are getting.

☞

Ä

Ä

Slide 38

Finding information about a socket

If you do not know what address the socket is using,
how do you know which functions to call ?

The first element in the socket address structure is
the address family. We can use perl's unpack
function to extract this.

$type = unpack("S", getsockname(SOCK));

if ($type == AF_INET) {
 ($port, $ipaddr) = sockaddr_in($paddr);
 $quad = inet_ntoa($ipaddr);
}
elsif ($type == AF_UNIX) {
 $path = sockaddr_un($paddr);
}
else {
 die "Unknown address family";
}

☞

Ä

Slide 39

Types of server

Forking server

Concurrent server

Threaded server

The inetd server

☞

☞

☞

☞

Slide 40

Forking server

A new process is forked for each client connection.

for (; $addr = accept(CLIENT, SERVER); close(CLIENT)) {
 if (!defined($pid = fork())) {
 warn "Cannot fork: $!";
 next;
 }
 elsif ($pid == 0) {
 process_client(*CLIENT);
 exit;
 }
}
die "accept: $!";

Whenever you fork processes you need to reap them
when they finish.

$SIG{CHLD} = sub { wait };

☞

☞

Slide 41

Concurrent server

All client connections are handled within one process.

select is used to determine when a client is ready.

use Symbol qw(gensym);

vec($rin = "",fileno(SERVER),1) = 1;
while (select($rout=$rin,undef,undef)) {
 if(vec($rout,fileno(SERVER),1)) {
 $client = gensym();
 $addr = accept($client, SERVER) or next;
 $client[fileno($client)] = $client;
 vec($rin, fileno($client), 1) = 1;
 }
 else {
 for($loop = 0 ; $loop < @client ; $loop++) {
 process_client($client[$loop])
 if (vec($rout, $loop, 1));
 }
 }
}

☞

☞

Slide 42

Threaded server

All client connections are handled within one process.

Each client has its own thread within the server
process.

use Thread::Pool;
use Symbol qw(gensym);

$pool = Thread::Pool->new;

while (accept($client = gensym(), SERVER)) {
 $pool->enqueue(\&process_client, $client);
}

die "accept: $!";

Threads within perl are still
considered severely experimental

☞

☞

M

Slide 43

The inetd server

A forking server that listens to many sockets.

Each socket is described in a file /etc/inetd.conf.

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a

Allows almost any filter program to be run as a server.

echo stream tcp nowait nobody /bin/cat -u

☞

☞

☞

Slide 44

Common problems

Output buffer

Comparing packed addresses

Closing handles

Address in use error message

☞

☞

☞

☞

Slide 45

Output buffer

Problem

I print to the socket handle, but the server never
sees my data.

Example

print SOCK "command\n";
$response = <SOCK>; # client hangs here

☞

Ä

☞

Slide 46

Output buffer (cont.)

Explanation

print is a stdio operation which uses buffering.

The contents of the buffer are not sent until the
buffer is flushed, which by default is not until the
buffer is full.

☞

Ä

Ä

Slide 47

Output buffer (cont.)

Solution

Turn on auto-flush

$ofh = select(SOCK)
$| = 1;
select($ofh);

this is often written as

select((select(SOCK), $|=1)[0]);

Or use syswrite.

The stdio functions in perl are

<>, eof, getc, print, printf, readline

☞

Ä

Ä

☞

Ä

Slide 48

Comparing packed addresses

Problem

I receive two packets from the same host and port,
but the addresses returned by recv are not the
same.

Example

$addr1 = recv(SOCK, $buffer1, 1024);
$addr2 = recv(SOCK, $buffer2, 1024);

print "From same host\n" if $addr1 eq $addr2;

☞

Ä

☞

Slide 49

Comparing packed addresses (cont.)

Explanation

The structure used to hold an address is a union of
several structures and an internet address does not
use all of this structure.

The extra space not used by the internet address is
probably filled with random data, so the addresses
will not compare as equal.

☞

Ä

Ä

Slide 50

Comparing packed addresses (cont.)

Solution

Zero fill the structures.

$addr1 = sockaddr_in(sockaddr_in($addr1));
$addr2 = sockaddr_in(sockaddr_in($addr2));

print "From same host\n" if $addr1 eq $addr2;

☞

Ä

Slide 51

Closing handles

Problem

My server dies with the error "Too many open files".

or

My client does not see when the server closes the
connection.

Example

$client = $sock->accept or die "accept: $!";
die "fork: $!" unless defined($pid = fork());
unless($pid) {
 process_client($client);
 close($client);
 exit;
}

☞

Ä

Ä

☞

Slide 52

Closing handles (cont.)

Explanation

When the server does a fork the parent still has an
open file descriptor to $client.

Calling close in the child process does not affect
the handle in the parent process.

☞

Ä

Ä

Slide 53

Closing handles (cont.)

Solution

Close $client in the parent process after the call to
fork.

Example

die "fork: $!" unless defined($pid = fork);

if($pid) {
 close($client)
} else {
 process_client($client);
 close($client);
 exit(0);
}

☞

Ä

☞

Slide 54

Address in use

Problem

My server occasionally crashes, but when I restart it
I often get "bind: Address already in use"

Example

$addr = inet_aton($host);
$paddr = sockaddr_in($port, $addr);

bind(SOCK, $paddr) or die "bind: $!";

☞

Ä

☞

Slide 55

Address in use (cont.)

Explanation

When a socket is closed, the system keeps the port
allocated for a short time to acknowledge the close
and catch any stray packets. This period is referred
to as TIME_WAIT.

Until the system releases the port, it cannot be
reused.

Solution

This can be avoided by telling the system that you
want to allow the socket to be reused.

use Socket qw(SOL_SOCKET SO_REUSEADDR);

setsockopt(SERVER, SOL_SOCKET, SO_REUSEADDR, 1);
bind(SERVER, $paddr) or die "bind: $!";

☞

Ä

Ä

☞

Ä

Slide 56

Case studies

Send Email with SMTP

Download Email from a POP3 server

Retrieve files from an FTP server

Transfer files between two remote FTP servers

Reading only selected news articles using NNTP

☞

☞

☞

☞

☞

Slide 57

POP3

Problem

Your ISP keeps your mail on their server and only
provides access via the POP3 protocol.

Solution

The Net::POP3 module will give you access to the
server and all the POP3 commands.

☞

Ä

☞

Ä

Slide 58

#!/bin/perl -w

use GetOpt::Long;
use Net::POP3;

$user = $ENV{USER} || $ENV{LOGNAME};
$out = "/var/spool/mail/" . $user;
$passwd = "";
$host = "mailhost";

GetOptions(
 ’h:s’ => \$host,
 ’u:s’ => \$user,
 ’p:s’ => \$passwd,
 ’o:s’ => \$out
);

open(OUT, ">>$out") or die "open: $!";

$pop3 = Net::POP3->new($host) or die "$@";
defined($pop3->login($user,$passwd)) or die $pop3->message;
$count = $pop3->stat;

POP3

Slide 59

foreach $n (1..$count) {
 if ($mesg = $pop3->get($n)) {

 # Add the From line for the mbox file format
 print OUT "From pop3get ", scalar localtime,"\n";
 print OUT map { s/^From/>From/; $_ } @$mesg;
 print OUT "\n";

 $pop3->delete($n) or warn $pop3->message;
 }
 else {
 warn $pop3->message;
 }
}

$pop3->quit;

close(OUT);

POP3

Slide 60

FTP

Problem

You have a process which creates log files on a
remote machine that is only accessible via FTP.

or

You have an FTP server on a machine where
customers can place files.

You need to periodically download those files and
remove them from the server.

☞

Ä

Ä

Ä

Slide 61

FTP

Solution

Use Net::FTP to scan the directories and download
the files.

Use cron to invoke the script periodically.

or

Modify the script to become a daemon process.

☞

Ä

☞

☞

Slide 62

#!/bin/perl -w

use Getopt::Long;
use Net::FTP;

GetOptions(
 ’h:s’ => \$host,
 ’u:s’ => \$user,
 ’p:s’ => \$passwd,
 ’d:s’ => \$dir,
 ’f:s’ => \$file,
 ’r’ => \$remove
);

sub fileglob_to_re {
 local($_) = @_;

 s#([./^\$()])#\\$1#g;
 s#\?#.#g;
 s#*#.*#g;
 s#\{([^}]+)\}#’(’ . join("|", split(/,/,$1)) . ’)’#ge;
 "^$_\$";
}

FTP

Slide 63

$ftp = Net::FTP->new($host) or die "$@";

$ftp->login($user, $passwd) or die $ftp->message;

$ftp->cwd($dir) or die $ftp->message;

$pattern = fileglob_to_re($file);
$done = $remove ? "Deleted.\n" : "Done.\n";

foreach $file (grep { /$pattern/o } $ftp->ls) {

 print STDERR "Get: ",$file," ...";

 $ftp->get($file) or do { print "Failed.\n"; next };

 if ($remove) {
 $ftp->delete($file) or print STDERR "Not ";
 }

 print STDERR $done;
}

$ftp->quit;

FTP

Slide 64

FTP - 2

Problem

You have some data on one FTP server which you
want to transfer to another.

The files are large and you do not have space for
them locally.

Or

It would take too long to transfer each file twice.

Solution

Get the source FTP server to send the file directly to
the destination server.

☞

Ä

Ä

Ä

☞

Ä

Slide 65

#!/bin/perl -w

use Getopt::Long;
use Net::FTP;

$s_user = $d_user = ’anonymous’;

GetOptions(
 ’src:s’ => \$src,
 ’dest:s’ => \$dst,
 ’du:s’ => \$d_user,
 ’dp:s’ => \$d_passwd,
 ’su:s’ => \$s_user,
 ’sp:s’ => \$s_passwd,
);

src and dest in format ftp.host.name:/path/to/file
($s_host, $s_dir, $s_file) = $src =~ m#^([^:]+):((?:.*/)?)([^/]+)$#;
($d_host, $d_dir, $d_file) = $dst =~ m#^([^:]+):((?:.*/)?)([^/]*)$#;

$d_file = $s_file unless length $d_file;

$s_ftp = Net::FTP->new($s_host) or die "$@";
$d_ftp = Net::FTP->new($d_host) or die "$@";

FTP - 2

Slide 66

$s_ftp->login($s_user, $s_passwd) or die $s_ftp->message;
$d_ftp->login($d_user, $d_passwd) or die $d_ftp->message;

$s_ftp->cwd($s_dir) if length $s_dir;
$d_ftp->cwd($d_dir) if length $d_dir;

Could be ->binary
$s_ftp->ascii or die $s_ftp->message;
$d_ftp->ascii or die $s_ftp->message;

$s_ftp->pasv_xfer($s_file, $d_ftp, $d_file)
 or warn $s_ftp->ok ? $d_ftp->message : $s_ftp->message;

$s_ftp->quit;
$d_ftp->quit;

FTP - 2

Slide 67

Security

Problem

You have written a server, but you want to restrict
whom the server responds to.

You need to restrict based on the user running the
process on the client machine and the IP address of
the client machine.

Solution

Determine the remote user with Net::Ident.

Check the IP address network with Net::Netmask.

☞

Ä

Ä

☞

Ä

Ä

Slide 68

#!/bin/perl -w

use Net::Ident;
use Net::Netmask qw(fetchNetblock);
use IO::Socket;
use IO::Select;
use Proc::Daemon;

my %allow = (
 ’127.0.0.0/24’ => { ’*’ => 1 },
 ’214.123.1.0/24’ => { ’tchrist’ => 0, ’*’ => 1 },
 ’192.168.1.0/24’ => { ’gbarr’ => 1 },
);

foreach $mask (keys %allow) {
 Net::Netmask->new($mask)->storeNetblock;
}

$sesson_id = Proc::Daemon::init;

$sock = IO::Socket::INET->new(
 LocalPort => ’daytime’,
 Listen => SOMAXCONN,
 Proto => ’tcp’,
 Reuse => 1,
) or die "$@";

Security

Slide 69

$sel = IO::Select->new($sock);

while($sel->can_read) {
 $client = $sock->accept;
 print $client scalar localtime,"\n"
 if check_user($client);
 close($client);
}

sub check_user {
 my $client = shift;

 $peer = $client->peerhost;
 $netblock = fetchNetblock($peer);

 return 0 unless ref $netblock;

 $allow = $allow{ $netblock->desc };
 $user = Net::Ident::lookup($client);

 return $allow->{$user} if exists $allow->{$user};
 return $allow->{’*’} if exists $allow->{’*’};
 return 0;
}

Security

Slide 70

Security

WARNING

There is no secure way to determine
the user at the other end of any
connection. Net::Ident provides a

means, but to do so it queries a server
on the client's machine. For this
reason it CANNOT be trusted.

Slide 71

NNTP

Problem

You do not have enough time to read news.

You are only interested in articles about a particular
subject.

Solution

Periodically run a script which finds the articles and
downloads them to a mail folder.

This can be done in a number of ways. This
example uses the NEWNEWS command to
determine which articles have been posted in a
given time period.

☞

Ä

Ä

☞

Ä

Ä

Slide 72

#!/bin/perl -w

use Net::NNTP;
use Getopt::Long;

$since = ’1d’;
$pattern = ’*’;
$outfile = "out";

Net::NNTP->debug(1);

GetOptions(
 ’h:s’ => \$host,
 ’g:s’ => \$groups,
 ’p:s’ => \$pattern,
 ’o:s’ => \$outfile,
 ’s:s’ => \$since
);

%map = (’m’ => 60, ’h’ => 60*60, ’d’ => 60*60*24, ’w’ => 60*60*24*7);

die "Bad since: $since" unless $since =~ /^(\d+)([mhdw])$/;

$since = time - ($1 * $map{$2});

NNTP

Slide 73

$nntp = Net::NNTP->new($host) or die "$@";

open(OUT,">>$outfile") or die "open: $!";

GROUP:
foreach $group (split(/,/, $groups)) {

 $nntp->group($group)
 or do { warn $group,": ",$nntp->message; next GROUP };

 $articles = $nntp->newnews($since, $group)
 or do { warn $group,": ",$nntp->message; next GROUP };

 foreach $article (@$articles) {
 $match = $nntp->xpat(’Subject’, $pattern, $article);

 if ($match && %$match) {
 $art = $nntp->article($article);
 print OUT ’From nntp ’,scalar localtime,"\n",@$art,"\n" if $art;
 }
 }

}

$nntp->quit;

NNTP

Slide 74

SMTP

Problem

You have a script which needs to send Email, but an
external mailer program is not available.

Solution

Use Net::SMTP to send Email directly to your mail
server.

☞

Ä

☞

Ä

Slide 75

#!/bin/perl -w

use Getopt::Long;
use Net::SMTP;

$host = ’mailhost’;
$from = $ENV{USER} || $ENV{LOGNAME};
$subject = "No subject!";

GetOptions(
 ’h:s’ => \$host,
 ’f:s’ => \$from,
 ’s:s’ => \$subject
);

die "No addresses\n" unless @ARGV;

$smtp = Net::SMTP->new($host) or die "$@";

$smtp->mail($from) or die $smtp->message;
$smtp->recipient(@ARGV) or die $smtp->message;

SMTP

Slide 76

$to = join(",", map { "<$_>" } @ARGV);

$header = <<"EDQ";
To: $to
Subject: $subject

EDQ

$smtp->data($header, <STDIN>) or die $smtp->message;

This could be done as :-
$smtp->data;
$smtp->datasend($header);
$smtp->datasend($_) while <STDIN>;
$smtp->dataend;

$smtp->quit;

SMTP

Slide 77

CPAN Modules used

Net::FTP, Net::SMTP, Net::NNTP, Net::POP3

authors/id/GBARR/libnet-1.0606.tar.gz

Proc::Daemon

authors/id/ EHOOD/Proc-Daemon-0.01.tar.gz

Net::Netmask

authors/id/MUIR/modules/Net-Netmask-1.4.tar.gz

Net::Ident

authors/id/JPC/Net-Ident-1.10.tar.gz

Thread::Pool

authors/id/MICB/ThreadPool-0.1.tar.gz

☞

Ä

☞

Ä

☞

Ä

☞

Ä

☞

Ä

Slide 78

Books

Perl Cookbook
Author: Tom Christiansen & Nathan Torkington
Publisher: O'Reilly & Associates
ISBN: 1-56592-243-3

Unix Network Programming, Second Edition
Author: W. Richard Stevens
Publisher: Prentice Hall
ISBN: 0-13-490012-X

☞

☞

